- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
A curve has the equation $y^2 = x^3.$ Find the length of the arc joining $(1, -1)$ to $(1, 1).$
-
Let position be a function of $t,$ what happens to $\mathbf{v}(t)$ and $v(t)$ when we differentiate $y^2 = x^3$ with respect to $t\,?$
-
Define the position vector $\mathbf{r}(t) = (x, y)$ as a function of $t.$ In other words:
$$
\begin{align*}
\mathbf{r}(t) &= x(t)\,\mathbf{i} + y(t)\,\mathbf{j}
\\
\\
\mathbf{v}(t) &= \frac{dx}{dt}\,\mathbf{i} + \frac{dy}{dt}\,\mathbf{j}
\end{align*}
$$
But we know that the graph of $\mathbf{r}(t)$ is confined by the equation $y^2 = x^3,$ so its velocity $\mathbf{v}(t)$ must be confined by:
$$
2y\frac{dy}{dt} = 3x^2\frac{dx}{dt}
$$
We can rewrite velocity as
$$
\mathbf{v}(t) = \frac{dx}{dt}\,\mathbf{i} + \frac{3x^2}{2y}\frac{dx}{dt}\,\mathbf{j}
$$
Recalling that $y^2 = x^3,$ speed $v(t)$ is:
$$
\begin{align*}
v(t) &= \sqrt{\left(\frac{dx}{dt}\right)^2\left(1 + \frac{9x^4}{4y^2}\right)}
\\
&= \left|\frac{dx}{dt}\right|\sqrt{1 + \frac{9}{4}x}
\end{align*}
$$
If we assume that $x$ and $y$ are real-valued functions, and $x$ increases monotonically, then $x \geq 0$ and $\frac{dx}{dt} \geq 0$ for all $t.$ Thus, $\left|\frac{dx}{dt}\right| = \frac{dx}{dt}$ for all $t.$
To find the arc length from $(1, -1)$ to $(1, 1),$ we first note that $y^2 = x^3,$ equivalent to $|y| = x^{3/2}$ $(x \geq 0),$ is in fact two functions of $x,$ symmetric about the $x$-axis. Thus, assuming $x(t_0) = 0$ and $x(t_1) = 1,$ the arc length $s$ can be expressed as:
$$
\begin{align*}
s &= 2\int_{t_0}^{t_1}v(t)\,dt
\\
&= 2\int_{t_0}^{t_1}\sqrt{1 + \frac{9}{4}x}\, \frac{dx}{dt}\,dt
\\
&=2\int_0^1\sqrt{1 + \frac{9}{4}x}\,dx
\\
&=\frac{16}{27}\left(1 + \frac{9}{4}x\right)^{3/2}\,\Biggr|_0^1
\\
&= \frac{26\sqrt{13} - 16}{27} \quad \blacksquare
\end{align*}
$$