- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
Two points $A$ and $B$ on a unit circle with center at $O$ determine a circular sector $AOB.$ Prove that the arc $AB$ has a length equal to twice the area of the sector.
-
Recall from section 2.10 that for a polar function with radius $r = f(\theta),$ the area of the sector $R$ from $0$ to $\theta_0,\, (0 \leq \theta_0 \leq 2\pi)$ is
$$
a(R) = \frac{1}{2}\int_0^{\theta_0}f^2(\theta)\,d\theta
$$
-
Since the curve is a circle of radius $1$ centered at the origin, we can write position $\mathbf{r}$ as a parameter of angle $\theta:$
$$
\mathbf{r}(\theta) = \cos \theta\,\mathbf{i} + \sin \theta\,\mathbf{j}
$$
Then, velocity $\mathbf{v}(\theta)$ and speed $v(\theta)$ are:
$$
\begin{align*}
\mathbf{v}(\theta) &= -\sin \theta\,\mathbf{i} + \cos \theta\,\mathbf{j}
\\
\\
v(\theta) &= \sqrt{\sin^2 \theta + \cos^2 \theta}
\\
&= 1
\end{align*}
$$
Arc length $s$ for angle $\theta = \theta_0$ is
$$
\begin{align*}
s &= \int_0^{\theta_0}v(\theta)\,d\theta
\\
&= \int_0^{\theta_0}d\theta
\\
&= \theta_0
\end{align*}
$$
Now, we recall the formula for the area of a region $R$ from $\theta = 0$ to $\theta = \theta_0$ of a polar function with radius $r(\theta):$
$$
\begin{align*}
a(R) &= \frac{1}{2}\int_0^{\theta_0}r^2(\theta)\,d\theta
\end{align*}
$$
But for a circle with radius $1$ centered at the origin, $r(\theta) = 1$ for all $\theta,$ thus for the sector drawn from $\theta = 0$ to $\theta = \theta_0,$ its area a(R) is:
$$
\begin{align*}
a(R) &= \frac{1}{2}\int_0^{\theta_0}\,d\theta
\\
&= \frac{1}{2}\theta_0
\end{align*}
$$
But this is half of the arc length $s.$ This completes the proof.