- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
Set up integrals for the lengths of the curves whose equations are:
(a) $y = e^x,$ $0 \leq x \leq 1$
(b) $x = t + \log t,$ $y = t - \log t,$ $1 \leq t \leq e$
Show that the second length is $\sqrt{2}$ times the first one.
-
(a) We define the position vector $\mathbf{r}(x)$ and velocity $\mathbf{v}(x)$ as:
$$
\begin{align*}
\mathbf{r}(x) &= x\,\mathbf{i} + e^{x}\,\mathbf{j}
\\
\\
\mathbf{v}(x) &= \mathbf{i} + e^{x}\,\mathbf{j}
\end{align*}
$$
Thus, the arc length $s_x$ from $x = 0$ to $x = 1$ is:
$$
\begin{align*}
s_x &= \int_0^1 v(x) \,dx
\\
&= \int_0^1 \sqrt{1 + e^{2x}} \,dx \quad \blacksquare
\end{align*}
$$
(b) We define the position vector $\mathbf{r}(t)$ and velocity vector $\mathbf{v}(t)$ as:
$$
\begin{align*}
\mathbf{r}(t) &= (t + \log t)\mathbf{i} + (t - \log t)\mathbf{j}
\\
\\
\mathbf{v}(t) &= \left(1 + \frac{1}{t}\right)\mathbf{i} + \left(1 - \frac{1}{t}\right)\mathbf{j}
\end{align*}
$$
Speed $v(t)$ is then defined as:
$$
\begin{align*}
v(t) &= \sqrt{\left(1 + \frac{2}{t} + \frac{1}{t^2}\right) + \left(1 - \frac{2}{t} + \frac{1}{t^2}\right)}
\\
&= \sqrt{2 + \frac{2}{t^2}}
\end{align*}
$$
With arc length $s_t:$
$$
\begin{align*}
s_t &= \int_1^e v(t)\,dt
\\
&= \sqrt{2}\int_1^e \sqrt{1 + \frac{1}{t^2}}\,dt \quad \blacksquare
\end{align*}
$$
To prove that $s_t$ is $\sqrt{2}$ times $s_x,$ we first note that by using the substitution $t = e^x$ and $\frac{dt}{dx} = e^x,$ the value $dt$ becomes $e^x\,dx,$ the limits of integration change from $t = e^{0}$ and $t = e^{1}$ to $x = 0$ and $x = 1,$ and the integral $s_t$ becomes:
$$
\begin{align*}
s_t &= \sqrt{2}\int_0^1\sqrt{1 + \frac{1}{e^{2x}}}\,e^x\,dx
\\
&= \sqrt{2}\int_0^1\sqrt{e^{2x}\left(1 + \frac{1}{e^{2x}}\right)}\,dx
\\
&= \sqrt{2}\int_0^1\sqrt{1 + e^{2x}}\,dx
\\
&= \sqrt{2}s_x \quad \blacksquare
\end{align*}
$$