- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
If $0 < b < 4a,$ let $\mathbf{r}(t) = a(t - \sin t)\mathbf{i} + a(1 - \cos t)\mathbf{j} + b\sin \frac{t}{2}\mathbf{k}.$ Show that the length of the path traced out from $t = 0$ to $t = 2\pi$ is $8aE(k),$ where $E(k)$ has the meaning given in Exercise 17 and $k^2 = 1 - (b/4a)^2.$
-
Recall the definition of $E(k)$ from exercise 17:
$$E(k) = \int_0^{\pi/2}\sqrt{1 - k^2\sin^2 t}\,dt$$
This is known as an elliptic integral of the second kind, where $0 \leq k < 1.$
To turn the equation for arc length into a multiple of $E(k),$ use Theorem 1.7 (Invariance under translation)
$$
\int_{a}^{b}f(x)\,dx = \int_{a + c}^{b + c}f(x - c)\,dx
$$
Theorem 1.8 (Expansion or contraction of the interval of integration):
$$
\int_{ka}^{kb}f\left(\frac{x}{k}\right)\,dx = k\int_{a}^{b}f(x)\,dx
$$
and the trigonometric identity $\sin(x) = \cos(x - \frac{\pi}{2}).$
-
We have velocity:
$$
\begin{align*}
\mathbf{v}(t) &= a\left(1 - \cos t\right)\mathbf{i} + a\left(\sin t\right)\mathbf{j} + \frac{b}{2}\cos\frac{t}{2}\mathbf{k}
\end{align*}
$$
and speed
$$
\begin{align*}
v(t) &= \sqrt{a^2(1 - \cos t)^2 + a^2\sin^2 t + \frac{b^2}{4}\cos^2\frac{t}{2}}
\\
&= \sqrt{a^2(2 - 2\cos t) + \frac{b^2}{4}\cos^2\frac{t}{2}}
\\
&= \sqrt{a^2\left[2 - 2\left(1 - \sin^2 \frac{t}{2}\right)\right] + \frac{b^2}{4}\cos^2\frac{t}{2}}
\\
&= \sqrt{4a^2\sin^2\frac{t}{2} + \frac{b^2}{4}\cos^2 \frac{t}{2}}
\\
&= 2a\sqrt{\sin^2\frac{t}{2} + \frac{b^2}{16a^2}\cos^2 \frac{t}{2}}
\\
&= 2a\sqrt{1 -\left(1 - \frac{b^2}{16a^2}\right)\cos^2 \frac{t}{2}}
\\
&= 2a\sqrt{1 - k^2\cos^2 \frac{t}{2}}
\end{align*}
$$
where $k^2 = 1 - (b/4a)^2$
Then, the arc length traced out by $f$ from $t = 0$ to $t = 2\pi$ is:
$$
\begin{align*}
s &= 2a\int_0^{2\pi}\sqrt{1 - k^2\cos^2\frac{t}{2}}\,dt
\end{align*}
$$
We can use Theorem 1.8 (Expansion or contraction of the interval of integration) to turn the above integral into:
$$
s = 4a\int_0^\pi \sqrt{1 - k^2\cos^2 t}\,dt
$$
Then, we use Theorem 1.7 (Integral invariance under translation) with $c = \pi/2$ to give us:
$$
s = 4a\int_{-\pi/2}^{\pi/2} \sqrt{1 - k^2\cos^2\left(t - \frac{\pi}{2}\right)}\,dt
$$
By trigonometric identity, $\cos(t - \frac{\pi}{2}) = \sin(t),$ giving us
$$
s = 4a\int_{-\pi/2}^{\pi/2} \sqrt{1 - k^2\sin^2t}\,dt
$$
Using Theorem 1.8 once more with $k = -1$ and noting that $\sin^2(-t) = \sin^2(t)$ for all $t,$ we see that the integral from $t = -\pi/2$ to $t = 0$ is equal the integral from $t = 0$ to $t = \pi/2,$ giving us:
$$
\begin{align*}
s &= 8a\int_{0}^{\pi/2} \sqrt{1 - k^2\sin^2t}\,dt
\\
&= 8aE(k) \quad \blacksquare
\end{align*}
$$