- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
Find the length of the path traced out by a particle moving on a curve according to the given equation during the time interval specified:
$$\mathbf{r}(t) = a(\sinh t - t)\mathbf{i} + a(\cosh t - 1)\mathbf{j}, \quad 0 \leq t \leq T, \quad a > 0$$
-
Velocity $\mathbf{v}(t)$ is
$$
\begin{align*}
a\left(\cosh t -1\right) \mathbf{i} + a\left(\sinh t\right)\mathbf{j}
\end{align*}
$$
Speed $v(t) = \|\mathbf{v}(t)\|$ is
$$
\begin{align*}
a\left(\cosh^2 t + \sinh^2 t + 1 - 2 \cosh t\right)^{1/2}
\end{align*}
$$
Arc length $s$ is
$$
\begin{align*}
s &= \int_0^{T}v(t)\,dt
\\
&= \int_0^T a\left(\cosh^2 t + \sinh^2 t + 1 - 2 \cosh t\right)^{1/2}\, dt
\end{align*}
$$