- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
Find the length of the path traced out by a particle moving on a curve according to the given equation during the time interval specified:
$$\mathbf{r}(t) = t\mathbf{i} + 3t^2\mathbf{j} + 6t^3\mathbf{k}, \quad 0 \leq t \leq 2$$
-
Velocity $\mathbf{v}(t)$ is
$$
\begin{align*}
\mathbf{v}(t) &= \mathbf{i} + 6t\mathbf{j} + 18t^2\mathbf{k}
\end{align*}
$$
Speed $v(t) = \|\mathbf{v}(t)\|$ is
$$
\begin{align*}
v(t) &= \sqrt{1 + 36t^2 + 18^2t^4}
\\
&= \sqrt{\left(1 + 18t^2\right)^2}
\\
&= 1 + 18t^2
\end{align*}
$$
Arc length $s$ is
$$
\begin{align*}
s &= \int_0^2 v(t)\, dt
\\
&= \int_0^2 1 + 18t^2\, dt
\\
&= t + 6t^3\, \Biggr|_0^2
\\
&= 50 \quad \blacksquare
\end{align*}
$$