- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.13 Exercises
-
Find the length of the path traced out by a particle moving on a curve according to the given equation during the time interval specified:
$$\mathbf{r}(t) = t\mathbf{i} + \log(\sec t)\mathbf{j} + \log(\sec t + \tan t)\mathbf{k}, \quad 0 \leq t \leq \frac{1}{4}\pi$$
-
Velocity $\mathbf{v}(t)$ is
$$
\begin{align*}
\mathbf{v}(t) &= \mathbf{i} + \tan t\,\mathbf{j} + \sec t \,\mathbf{k}
\end{align*}
$$
Speed $v(t) = \|\mathbf{v}(t)\|$ is
$$
\begin{align*}
v(t) &= \sqrt{1 + \tan^2 t + \sec^2 t}
\\
&= \sqrt{\frac{\cos^2 t + \sin^2 t + 1}{\cos^2 t}}
\\
&= \sqrt{2}\sec t
\end{align*}
$$
Note: From our calculation of velocity, we saw that $\frac{d}{dt}\log (\tan t + \sec t) = \sec t.$
Arc length $s$ is:
$$
\begin{align*}
s &= \int_0^{\pi/4} v(t)\, dt
\\
&= \sqrt{2}\int_0^{\pi/4}\sec t\, dt
\\
&= \sqrt{2}\log\left(\tan t + \sec t\right)\,\Biggr|_0^{\pi/4}
\\
&= \sqrt{2}\log\left(1 + \sqrt{2}\right) \quad \blacksquare
\end{align*}
$$