- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.15 Exercises
-
Refer to the curves described in Exercises 1 through 6 of Section 14.9 and in each case determine the curvature $\kappa(t)$ for the value of $t$ indicated.
-
Recall from Section 14.14, (equation 14.20) that the length of the curvature vector, or the curvature $\kappa$ of a curve is defined as:
$$
\begin{align}
\\
\kappa(t) = \frac{\|T'(t)\|}{v(t)} \tag{14.20}
\end{align}
$$
-
1.
$$
\begin{align*}
\\
\|T'(t)\| &= \frac{\sqrt{2}}{1 + t^2}
\\
\\
v(t) &= 3\sqrt{2}\left(1 + t^2\right)
\\
\\
\kappa(t) &= \frac{\|T'(t)\|}{v(t)}
\\
&= \frac{1}{3\left(1 + t^2\right)^2}
\\
\kappa(2) &= \frac{1}{75} \quad \blacksquare
\end{align*}
$$
2.
$$
\begin{align*}
\\
\|T'(\pi)\| &= \frac{\left[\left(1 + e^{2\pi}\right)\left(1 + 2e^{2\pi}\right)\right]^{1/2}}{\left(1 + e^{2\pi}\right)^{3/2}}
\\
\\
v(\pi) &= \sqrt{1 + e^{2\pi}}
\\
\\
\kappa(\pi) &= \frac{\left(1 + 2e^{2\pi}\right)^{1/2}}{\left(1 + e^{2\pi}\right)^{3/2}}
\quad
\blacksquare
\end{align*}
$$
3.
$$
\begin{align*}
\\
\|T'(0)\| &= \frac{6}{5}
\\
\\
v(0) &= 5
\\
\\
\kappa(0) &= \frac{6}{25}
\quad
\blacksquare
\end{align*}
$$
4.
$$
\begin{align*}
\\
\|T'(\pi)\| &= \frac{\sqrt{2}}{2}
\\
\\
v(\pi) &= 2
\\
\\
\kappa(\pi) &= \frac{1}{4} \sqrt{2}
\quad
\blacksquare
\end{align*}
$$
5.
$$
\begin{align*}
\\
\|T'(1)\| &= \frac{2}{3}
\\
\\
v(1) &= 9
\\
\\
\kappa(1) &= \frac{2}{27}
\quad
\blacksquare
\end{align*}
$$
6.
$$
\begin{align*}
\\
\left\|T'\left(\frac{\pi}{4}\right)\right\| &= \frac{\sqrt{2}}{2}
\\
\\
v\left(\frac{\pi}{4}\right) &= \sqrt{2}
\\
\\
\kappa\left(\frac{\pi}{4}\right) &= \frac{1}{2}
\quad
\blacksquare
\end{align*}
$$