- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.15 Exercises
-
A particle moves along a plane curve with constant speed 5. It starts at the origin at time $t = 0$ with initial velocity $5\,\mathbf{j},$ and it never goes to the left of the $y$-axis. At every instant the curvature of the path is $\kappa(t) = 2t.$ Let $\alpha(t)$ denote the angle that the velocity vector makes with the positive $x$-axis at time $t.$
(a) Determine $\alpha(t)$ explicitly as a function of $t.$
(b) Determine the velocity $\mathbf{v}(t)$ in terms of $\,\mathbf{i}$ and $\,\mathbf{j}.$
-
(a) Refer to Example 2 of Section 14.14, "Curvature of a plane curve", to review the relation between curvature $\kappa(t)$ and the angle $\alpha(t)$ between the velocity vector and the positive $x$-axis.
(b) Recall from Section 14.8 that the unit tangent $T(t)$ can be expressed in terms of the angle of inclination as follows:
$$
\begin{align*}
\\
T(t) &= \cos\alpha(t)\mathbf{i} + \sin\alpha(t)\mathbf{j}
\end{align*}
$$
Then, we can multiply the unit tangent by the speed to obtain the velocity in terms of $\mathbf{i}$ and $\mathbf{j}.$
-
(a) As discussed in Example 2 of Section 14.14, the angle of inclination $\alpha(t)$ between the tangent vector and the positive $x$-axis is related to curvature as follows:
$$
\begin{align*}
\\
\kappa(t) &= \left|\frac{d\alpha}{ds}\right|
\end{align*}
$$
Using the chain rule, noting that $v(t) = ds/dt,$ we can deduce that
$$
\begin{align*}
\\
|\alpha'(t)| &= \left|\frac{d\alpha}{dt}\right|
\\
&= \left|\frac{d\alpha}{ds}\right|\frac{ds}{dt}
\\
&= \left|\frac{d\alpha}{ds}\right|v(t)
\\
&= \kappa(t)v(t)
\end{align*}
$$
Given that the velocity has a starting angle of $\pi/2$ and that the particle never crosses the $y$-axis, this implies that the angle of inclination always moves towards $0.$ In other words, $\alpha'(t) = -\kappa(t)v(t).$
Plugging in our values for speed and curvature, and noting that the starting angle is $\pi/2,$ we can express the angle of inclination explicitly as a function of $t$ by integrating its derivative from $0$ to $t$
$$
\begin{align*}
\\
\alpha(t) &= \int_0^t \alpha'(u)\,du + \frac{\pi}{2}
\\
\\
&=\frac{\pi}{2} - \int_0^t 10u\,du
\\
\\
&= \frac{\pi}{2} + 5u^2\Biggr|_t^0
\\
&= \frac{\pi}{2} -5t^2
\quad
\blacksquare
\end{align*}
$$
(b) Recall from Section 14.8 that the unit tangent $T(t)$ can be expressed in terms of the angle of inclination as follows:
$$
\begin{align*}
\\
T(t) &= \cos\alpha(t)\mathbf{i} + \sin\alpha(t)\mathbf{j}
\end{align*}
$$
In other words:
$$
\begin{align*}
\\
T(t) &= \cos \left(\frac{\pi}{2} -5t^2\right)\mathbf{i} + \sin\left(\frac{\pi}{2} -5t^2\right)\mathbf{j}
\end{align*}
$$
Applying the trigonometric identities
$$
\begin{align*}
\\
\cos\left(x + \frac{\pi}{2}\right) &= -\sin x
\\
\sin\left(x + \frac{\pi}{2}\right) &= \cos x
\\
\cos(-x) &= \cos x
\\
\sin(-x) &= -\sin x
\end{align*}
$$
The unit tangent becomes
$$
\begin{align*}
\\
T(t) &= \cos \left(\frac{\pi}{2} -5t^2\right)\mathbf{i} + \sin\left(\frac{\pi}{2} -5t^2\right)\mathbf{j}
\\
&= -\sin \left(-5t^2\right)\mathbf{i} + \cos\left(-5t^2\right)\mathbf{j}
\\
&= \sin \left(5t^2\right)\mathbf{i} + \cos\left(5t^2\right)\mathbf{j}
\end{align*}
$$
Multiplying by speed gives us the velocity in terms of $\mathbf{i}$ and $\mathbf{j}$
$$
\begin{align*}
\\
\mathbf{v}(t) &= 5\sin \left(5t^2\right)\mathbf{i} + 5\cos\left(5t^2\right)\mathbf{j}
\quad
\blacksquare
\end{align*}
$$