- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.15 Exercises
-
A helix is described by the position function $\mathbf{r}(t) = a\cos \omega t\,\mathbf{i} + a\sin \omega t\,\mathbf{j} + b\omega t\,\mathbf{k}.$ Prove that it has constant curvature $\kappa = a/(a^2 + b^2).$
-
Recall from Section 14.14, (equation 14.20) that the length of the curvature vector, or the curvature $\kappa$ of a curve is defined as:
$$
\begin{align}
\\
\kappa(t) = \frac{\|T'(t)\|}{v(t)} \tag{14.20}
\end{align}
$$
-
If the position function is defined by
$$
\begin{align*}
\\
\mathbf{r}(t) = a\cos \omega t\,\mathbf{i} + a\sin \omega t\,\mathbf{j} + b\omega t\,\mathbf{k}
\end{align*}
$$
Then its velocity $\mathbf{v}(t)$ and speed $v(t)$ are defined by
$$
\begin{align*}
\\
\mathbf{v}(t) &= -a\omega\sin \omega t\,\mathbf{i} + a\omega\cos \omega t\,\mathbf{j} + b\omega\,\mathbf{k}
\\
\\
v(t) &= |\omega| \sqrt{a^2 + b^2}
\end{align*}
$$
Then, the unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
&= \frac{-a\omega\sin \omega t\,\mathbf{i} + a\omega\cos \omega t\,\mathbf{j} + b\omega\,\mathbf{k}}{|\omega| \sqrt{a^2 + b^2}}
\end{align*}
$$
Taking its derivative with respect to $t,$ noting that $v(t)$ is constant, we obtain
$$
\begin{align*}
\\
T'(t) &= \frac{\mathbf{a}(t)}{v(t)}
\\
&= \frac{-a\omega^2\cos \omega t\,\mathbf{i} - a\omega^2\sin \omega t\,\mathbf{j}}{|\omega| \sqrt{a^2 + b^2}}
\end{align*}
$$
Whose norm is
$$
\begin{align*}
\\
\|T'(t)\| &= \frac{|a| \omega^2}{|\omega|\sqrt{a^2 + b^2}}
\end{align*}
$$
Then, curvature $\kappa(t)$ is
$$
\begin{align*}
\\
\kappa(t) &= \frac{\|T'(t)\|}{v(t)}
\\
&= \frac{|a| \omega^2}{\omega^2(a^2 + b^2)}
\end{align*}
$$
Given that $a > 0$ for helical motion (as defined in section 14.6), we get $\kappa = a/(a^2 + b^2). \quad \blacksquare$