- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.15 Exercises
-
For the curve whose vector equation is $\mathbf{r}(t) = e^t\,\mathbf{i} + e^{-t}\,\mathbf{j} + \sqrt{2}t\,\mathbf{k},$ show that the curvature is $\kappa(t) = \sqrt{2}/(e^t + e^{-t})^2.$
-
From Theorem 14.14 we can express curvature in terms of acceleration, velocity, and speed:
$$
\begin{align*}
\kappa(t) &= \frac{\|\mathbf{a}(t) \times \mathbf{v}(t)\|}{v^3(t)}
\end{align*}
$$
And we can use Lagrange's identity to express the norm of the cross product as
$$
\begin{align*}
\\
\|\mathbf{a}(t) \times \mathbf{v}(t)\|^2 &= \|\mathbf{a}(t)\|^2\|\mathbf{v}(t)\|^2 - \left(\mathbf{a}(t)\cdot\mathbf{v}(t)\right)^2
\end{align*}
$$
-
To find the curvature of the curve described by $\mathbf{r}(t)$ we must find its velocity, acceleration, and speed.
$$
\begin{align*}
\\
\mathbf{v}(t) &= e^t\,\mathbf{i} - e^{-t}\,\mathbf{j} + \sqrt{2}\,\mathbf{k}
\\
\\
\mathbf{a}(t) &= e^t\,\mathbf{i} + e^{-t}\,\mathbf{j}
\\
\\
v(t) &= \sqrt{e^{2t} + 2 + e^{-2t}}
\\
&= \sqrt{(e^{t} + e^{-t})^2}
\\
&= e^t + e^{-t}
\end{align*}
$$
Then, we can apply Lagrange's identity to find the norm $\|\mathbf{a}(t) \times \mathbf{v}(t)\|$
$$
\begin{align*}
\\
\|\mathbf{a}(t) \times \mathbf{v}(t)\|^2 &= \|\mathbf{a}(t)\|^2\|\mathbf{v}(t)\|^2 - \left(\mathbf{a}(t)\cdot\mathbf{v}(t)\right)^2
\\
\\
&= \left(e^{2t} + e^{-2t}\right)\left(e^{2t} + e^{-2t} + 2\right) - \left(e^{2t} - e^{-2t}\right)^2
\\
&= \left(e^{4t} + 2 + e^{-4t} + 2e^{2t} + 2e^{-2t}\right)
\\
&- \left(e^{4t} - 2 + e^{-4t}\right)
\\
&= 2e^{2t} + 4 + 2e^{-2t}
\\
&= 2\left(e^t + e^{-t}\right)^2
\end{align*}
$$
Thus, $\|\mathbf{a}(t) \times \mathbf{v}(t)\| = \sqrt{2}\left(e^t + e^{-t}\right).$
Combining this result with our previously calculated speed function, we get:
$$
\begin{align*}
\kappa(t) &= \frac{\sqrt{2}\left(e^t + e^{-t}\right)}{\left(e^t + e^{-t}\right)^3}
\\
\\
&= \frac{\sqrt{2}}{\left(e^t + e^{-t}\right)^2}
\quad
\blacksquare
\end{align*}
$$