- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.15 Exercises
-
(a) For a plane curve described by the equation $\mathbf{r}(t) = x(t)\,\mathbf{i} + y(t)\,\mathbf{j},$ show that the curvature is given by the formula
$$
\begin{align*}
\\
\kappa(t) &= \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\{[x'(t)]^2 + [y'(t)]^2\}^{3/2}}
\\
\\
\end{align*}
$$
(b) If a plane curve has the Cartesian equation $y = f(x),$ show that the curvature at the point $(x, f(x))$ is
$$
\begin{align*}
\\
\kappa &= \frac{|f''(x)|}{\{1 + [f'(x)]^2\}^{3/2}}
\end{align*}
$$
-
These are both specific applications of equation (14.22) of Theorem 14.14:
$$
\begin{align*}
\\
\kappa(t) &= \frac{\|\mathbf{a}(t) \times \mathbf{v}(t)\|}{v^3(t)} \tag{14.22}
\end{align*}
$$
-
(a) For the plane curve described by the position vector $\mathbf{r}(t) = x(t)\,\mathbf{i} + y(t)\,\mathbf{j},$ velocity, speed, and acceleration are:
$$
\begin{align*}
\\
\mathbf{v}(t) &= x'(t)\,\mathbf{i} + y'(t)\,\mathbf{j}
\\
\\
v(t) &= \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2}
\\
\\
\mathbf{a}(t) &= x''(t)\,\mathbf{i} + y''(t)\,\mathbf{j}
\end{align*}
$$
Using equation (14.22) of Theorem 14.14, curvature is
$$
\begin{align*}
\\
\kappa(t) &= \frac{\|\mathbf{a}(t) \times \mathbf{v}(t)\|}{v^3(t)}
\end{align*}
$$
To find the norm $\|\mathbf{a}(t) \times \mathbf{v}(t)\|$ we first calculate the cross product $\mathbf{a}(t) \times \mathbf{v}(t)$
$$
\begin{align*}
\\
\mathbf{a}(t) \times \mathbf{v}(t) &= \left[x''(t)y'(t) - y''(t)x'(t)\right]\mathbf{k}
\end{align*}
$$
Its norm is then:
$$
\begin{align*}
\\
\|\mathbf{a}(t) \times \mathbf{v}(t)\| &= \sqrt{\left[x''(t)y'(t) - y''(t)x'(t)\right]^2}
\\
\\
&= \left|x''(t)y'(t) - y''(t)x'(t)\right|
\\
\\
&= \left|-\left[x''(t)y'(t) - y''(t)x'(t)\right]\right|
\\
\\
&= \left|x'(t)y''(t) - y'(t)x''(t)\right|
\end{align*}
$$
Using this and our previously calculated speed value, we see that the curvature at time $t$ is
$$
\begin{align*}
\\
\kappa(t) &= \frac{\left|x'(t)y''(t) - y'(t)x''(t)\right|}{\left\{\left[x'(t)\right]^2 + \left[y'(t)\right]^2\right\}^{3/2}}
\quad
\blacksquare
\end{align*}
$$
(b) If the plane curve is described by the Cartesian equation $y = f(x)$ then its position vector parameterized by $x$ is
$$
\begin{align*}
\\
\mathbf{r}(x) &= x\,\mathbf{i} + f(x)\,\mathbf{j}
\end{align*}
$$
Velocity, speed, and acceleration are then defined by:
$$
\begin{align*}
\\
\mathbf{v}(x) &= \mathbf{i} + f'(x)\,\mathbf{j}
\\
\\
v(x) &= \sqrt{1+ \left[f'(x)\right]^2}
\\
\\
\mathbf{a}(x) &= f''(x)\,\mathbf{j}
\end{align*}
$$
Referring back to equation (14.22), curvature can be written as
$$
\begin{align*}
\\
\kappa(x) &= \frac{\|\mathbf{a}(x) \times \mathbf{v}(x)\|}{v^3(x)}
\end{align*}
$$
To find the norm $\|\mathbf{a}(x) \times \mathbf{v}(x)\|$ we first calculate the cross product $\mathbf{a}(x) \times \mathbf{v}(x)$
$$
\begin{align*}
\\
\mathbf{a}(x) \times \mathbf{v}(x) &= -f''(x)\,\mathbf{k}
\end{align*}
$$
Then we can see that its norm is $|f''(x)|.$ Using this value along with our previously calculated speed we find that the curvature at $x$ is
$$
\begin{align*}
\\
\kappa(x) &= \frac{|f''(x)|}{\left\{1 + \left[f'(x)\right]^2\right\}^{3/2}}
\end{align*}
\quad
\blacksquare
$$