- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
A particle moves in a plane so that its position at time $t$ has polar coordinates $r = t,$ $\theta = t.$ Find formulas for the velocity $\mathbf{v},$ the acceleration $\mathbf{a},$ and the curvature $\kappa$ at any time $t.$
-
Recall from Section 14.16 that position $\mathbf{r}$ can be parameterized by $\theta$ using the equation
$$
\begin{align*}
\\
\mathbf{r} &= r\mathbf{u}_r,
\quad
\text{where}
\quad
\mathbf{u}_r = \cos\theta\,\mathbf{i} + \sin\theta\,\mathbf{j}
\end{align*}
$$
We also define the unit vector $\mathbf{u}_\theta\, ,$ perpendicular to $\mathbf{u}_r\, ,$ as
$$
\begin{align*}
\\
\mathbf{u}_\theta &= \frac{d\mathbf{u}_r}{d\theta} = -\sin\theta\,\mathbf{i} + \cos\theta\,\mathbf{j}
\end{align*}
$$
Then, velocity with respect to $t$ is given by:
$$
\begin{align*}
\\
\mathbf{v} &= \frac{d\mathbf{r}}{dt} = \frac{d(r\mathbf{u}_r)}{dt} = \frac{dr}{dt}\mathbf{u}_r + r\frac{d\mathbf{u}_r}{dt},
\end{align*}
$$
Using the chain rule, we can write $\frac{d\mathbf{u}_r}{dt}$ as:
$$
\begin{align*}
\\
\frac{d\mathbf{u}_r}{dt} &= \frac{d\mathbf{u}_r}{d\theta} \frac{d\theta}{dt} = \mathbf{u}_\theta \frac{d\theta}{dt}
\end{align*}
$$
Thus, we can express $\mathbf{v}$ in terms of the perpendicular unit vectors $\mathbf{u}_r$ and $\mathbf{u}_\theta$
$$
\begin{align*}
\\
\mathbf{v} &= \frac{dr}{dt}\mathbf{u}_r + r\frac{d\theta}{dt}\mathbf{u}_\theta
\end{align*}
$$
Where the factors multiplying $\mathbf{u}_r$ and $\mathbf{u}_\theta$ are called the radial and transverse components of velocity, respectively. Acceleration can also be expressed in terms of its radial and transverse components:
$$
\begin{align*}
\\
\mathbf{a} &= \left(\frac{d^{2}r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\mathbf{u}_r + \left(r\frac{d^{2}\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}\right)\mathbf{u}_\theta
\end{align*}
$$
What happens to the second derivatives of $r$ and $\theta$ with respect to $t$ when $r = \theta = t?$
-
Let $\mathbf{u}_r$ and $\mathbf{u}_\theta$ be the perpendicular unit vectors corresponding to the radial and transverse components of motion:
$$
\begin{align*}
\\
\mathbf{u}_r &= \cos\theta\,\mathbf{i} + \sin\theta\,\mathbf{j}
\\
\\
\mathbf{u}_\theta &= \frac{d\mathbf{u}_r}{d\theta} = -\sin\theta\,\mathbf{i} + \cos\theta\,\mathbf{j}
\end{align*}
$$
Then, radial position is defined by $\mathbf{r} = r\mathbf{u}_r.$ Using equations (14.25) and (14.26), we can express velocity and acceleration in terms of their radial and transverse components as follows:
$$
\begin{align*}
\\
\mathbf{v} &= \frac{dr}{dt}\mathbf{u}_r + r\frac{d\theta}{dt}\mathbf{u}_\theta
\\
\\
&= \mathbf{u}_r + r\,\mathbf{u}_\theta
\\
\\
\mathbf{a} &= \left(\frac{d^{2}r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right)\mathbf{u}_r + \left(r\frac{d^{2}\theta}{dt^2} + 2\frac{dr}{dt}\frac{d\theta}{dt}\right)\mathbf{u}_\theta
\\
\\
&= -r\,\mathbf{u}_r + 2\,\mathbf{u}_\theta
\end{align*}
$$
The curvature of the curve described by $\mathbf{r}$ can be obtained by using equation (14.22):
$$
\begin{align*}
\\
\kappa(t) &= \frac{\|\mathbf{a}\times \mathbf{v}\|}{v^3(t)}
\end{align*}
$$
Using Lagrange's identity, noting that $\mathbf{u}_r$ and $\mathbf{u}_\theta$ are perpendicular unit vectors, we obtain
$$
\begin{align*}
\\
\|\mathbf{a}\times \mathbf{v}\| &= \sqrt{\|\mathbf{a}\|^2\|\mathbf{v}\|^2 - \left(\mathbf{a} \cdot \mathbf{v}\right)^2}
\\
&= \sqrt{(r^2 + 4)(r^2 + 1) - r^2}
\\
&= \sqrt{r^4 + 4r^2 + 4}
\\
&= r^2 + 2
\end{align*}
$$
In the above derivation, we also see that $\|\mathbf{v}\|^2 = r^2 + 1.$ Combining these results, we find that curvature is:
$$
\begin{align*}
\\
\kappa &= \frac{r^2 + 2}{\left(r^2 + 1\right)^{3/2}}
\end{align*}
$$
Noting that $r(t) = t$ and $\theta(t) = t$ for all $t,$ we can express velocity, acceleration, and curvature in terms of $t$ to give us:
$$
\begin{align*}
\mathbf{v}(t) &= \mathbf{u}_r + t\,\mathbf{u}_\theta
\\
\\
\mathbf{a}(t) &= -t\,\mathbf{u}_r + 2\,\mathbf{u}_\theta
\\
\\
\kappa(t) &= \frac{t^2 + 2}{\left(t^2 + 1\right)^{3/2}}
\quad
\blacksquare
\end{align*}
$$