- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
In each of Exercises 8 through 11, make a sketch of the plane curve having the given polar equation and compute its arc length.
$$r = 1 - \cos \theta,\quad 0 \leq \theta \leq 2\pi.$$
-
We know from Exercise 4 that the arc length $s$ of the curve given by the polar equation $r = f(\theta)$ from $\theta = a$ to $\theta = b,$ where $a \leq \theta \leq b \leq a + 2\pi$ is:
\begin{align*}
\\
s &= \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta.
\end{align*}
-
The arc length $s$ of the curve given by the polar equation $r = f(\theta)$ from $\theta = a$ to $\theta = b,$ where $a \leq \theta \leq b \leq a + 2\pi$ is:
\begin{align*}
\\
s &= \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta.
\end{align*}
This means that the arc length of the polar function with radius $r = 1 - \cos \theta$ from $\theta = 0$ to $\theta = \pi$ is
\begin{align*}
\\
s &= \int_0^{2\pi}\sqrt{(1 - \cos\theta)^2 + \sin^2\theta}\,d\theta
\\
\\
&= \int_0^{2\pi}\sqrt{2 - 2\cos\theta}\,d\theta
\\
\\
&= \sqrt{2}\int_0^{2\pi}\sqrt{1 - \cos\theta}\,d\theta
\end{align*}
Using the double-angle identity of the cosine $(\cos \theta = 1 - 2\sin^2\frac{\theta}{2}),$ and noting that the sine function is non-negative on the interval $[0, \pi],$ the above integral then becomes
\begin{align*}
\\
s &= \sqrt{2}\int_0^{2\pi}\sqrt{1 - \cos\theta}\,d\theta
\\
\\
&= \sqrt{2}\int_0^{2\pi}\sqrt{1 - \left[1 - 2\sin^2\left(\frac{\theta}{2}\right)\right]}\,d\theta
\\
\\
&= \sqrt{2}\int_0^{2\pi}\sqrt{2\sin^2\left(\frac{\theta}{2}\right)}\,d\theta
\\
\\
&= 2\int_0^{2\pi}\sin\left(\frac{\theta}{2}\right)\,d\theta
\\
\\
&= 4\cos\left(\frac{\theta}{2}\right)\Biggr|_{2\pi}^0
\\
\\
&= 8.
\quad
\blacksquare
\end{align*}