- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
Let $\phi$ denote the angle, $0 \leq \phi \leq \pi,$ between the position vector and the velocity vector of a curve. If the curve is expressed in polar coordinates, prove that $v \sin \phi = r$ and $v \cos \phi = dr/d\theta,$ where $v$ is the speed.
-
If $\phi$ denotes the angle between the position vector and velocity vector, then $\sin \phi$ and $\cos\phi$ can be expressed as:
\begin{align*}
\\
\sin \phi &= \frac{\|\mathbf{r}\times\mathbf{v}\|}{\|\mathbf{r}\|\|\mathbf{v}\|}
\\
\\
\cos \phi &= \frac{\mathbf{r}\cdot\mathbf{v}}{\|\mathbf{r}\|\|\mathbf{v}\|}
\end{align*}
If the curve is expressed in polar coordinates, this means that $r = f(\theta)$ where $\theta = t.$ What does this imply about $d\theta/dt$ and $dr/dt?$
-
If $\phi$ denotes the angle between the position vector and velocity vector, then $\sin \phi$ and $\cos\phi$ can be expressed as:
\begin{align*}
\\
\sin \phi &= \frac{\|\mathbf{r}\times\mathbf{v}\|}{\|\mathbf{r}\|\|\mathbf{v}\|}
\\
\\
\cos \phi &= \frac{\mathbf{r}\cdot\mathbf{v}}{\|\mathbf{r}\|\|\mathbf{v}\|}
\end{align*}
Expressing position and velocity in terms of their radial and transverse components, noting that $\|\mathbf{r}\| = r$ and $\|\mathbf{v}\| = v,$ we get:
\begin{align*}
\\
\mathbf{r} &= r\mathbf{u}_r
\\
\\
\mathbf{v} &= \frac{dr}{dt}\mathbf{u}_r + r\frac{d\theta}{dt}\mathbf{u}_{\theta}.
\end{align*}
Then, we can use Lagrange's identity to express $\|\mathbf{r}\times\mathbf{v}\|$ in terms of these components to give us:
\begin{align*}
\\
\sin \phi &= \frac{\|\mathbf{r}\times\mathbf{v}\|}{\|\mathbf{r}\|\|\mathbf{v}\|}
\\
\\
&= \frac{\sqrt{r^2\left[\left(\frac{dr}{dt}\right)^2 + r^2\left(\frac{d\theta}{dt}\right)^2\right] - r^2\left(\frac{dr}{dt}\right)^2}}{rv}
\\
\\
&= \frac{r}{v}\frac{d\theta}{dt}.
\\
\\
\cos \phi &= \frac{\mathbf{r}\cdot\mathbf{v}}{\|\mathbf{r}\|\|\mathbf{v}\|}
\\
\\
&= \frac{r\frac{dr}{dt}}{rv}
\\
\\
&= \frac{dr}{dt}\frac{1}{v}.
\end{align*}
Multiplying both sides by v gives us
\begin{align*}
\\
v\sin\phi &= r\frac{d\theta}{dt}
\\
\\
v\cos\phi &= \frac{dr}{dt}.
\end{align*}
But, the curve is expressed in polar coordinates, which means $r = f(\theta),$ where $\theta(t) = t.$ By application of the chain rule, with $d\theta/dt = 1,$ the above equations become
\begin{align*}
\\
v\sin\phi &= r\frac{d\theta}{dt} = r
\\
\\
v\cos\phi &= \frac{dr}{dt} = \frac{dr}{d\theta}\frac{d\theta}{dt}= \frac{dr}{d\theta}.
\quad
\blacksquare
\end{align*}