- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
A particle moves in a plane perpendicular to the z-axis. The motion takes place along a circle with center on this axis.
(a) Show that there is a vector $\pmb{\omega}(t)$ parallel to the $z$-axis such that
$$
\mathbf{v}(t) = \pmb{\omega}(t) \times \mathbf{r}(t)
$$
where $\mathbf{r}(t)$ and $\mathbf{v}(t)$ denote the position and velocity vectors at times $t.$ The vector $\pmb{\omega}(t)$ is called the angular velocity vector and its magnitude $\omega(t) = \|\pmb{\omega}(t)\|$ is called the angular speed.
(b) The vector $\pmb{\alpha}(t) = \pmb{\omega}'(t)$ is called the angular acceleration vector. Show that the acceleration vector $\mathbf{a}(t) = \mathbf{v}'(t)$ is given by the formula
\begin{align*}
\\
\mathbf{a}(t) = \left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t) - \omega^2(t)\mathbf{r}(t) + \pmb{\alpha}(t) \times \mathbf{r}(t)
\end{align*}
(c) If the particle lies in the $xy$-plane and if the angular speed $\omega(t)$ is constant, say $\omega(t) = \omega,$ prove that the acceleration vector $\mathbf{a}(t)$ is centripetal and that, in fact, $\mathbf{a}(t) = -\omega^2\mathbf{r}(t).$
-
(a) Recall that for circular motion, the radial component of velocity is zero and the transverse component is $r\frac{d\theta}{dt}$ where $\left|\frac{d\theta}{dt}\right|$ is the angular speed. Refer to the solution of Exercise 18 to derive $\pmb{\omega}(t).$
(b) Recall that for two vector-valued functions $F$ and $G,$ $\left(F \times G\right)' = \left(F' \times G\right) + \left(G' \times F\right).$
(c) If the motion lies in the $xy$-plane, what does this imply about the term $\left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t)$ in the equation for acceleration? If angular velocity $\omega = \frac{d\theta}{dt}$ is constant, what does this imply about $\pmb{\alpha}(t)?$
-
(a) For circular motion with center on the $z$-axis, we have the following relations between the rectangular coordinates $(x, y)$ and the polar coordinates $r$ and $\theta.$ Let $r = \|\mathbf{r}\|,$ then
\begin{align*}
\\
x &= r\cos\theta,
\quad
y = r\sin\theta.
\end{align*}
We now define two perpendicular unit vectors $\mathbf{u}_r$ and $\mathbf{u}_{\theta}:$
\begin{align*}
\\
\mathbf{u}_r &= \cos\theta\,\mathbf{i} + \sin\theta\,\mathbf{j}
\\
\\
\mathbf{u}_{\theta} &= \frac{d\mathbf{u}_r}{d\theta}
\\
\\
&= -\sin\theta\,\mathbf{i} + \cos\theta\,\mathbf{j}
\end{align*}
Then, we can rewrite position as $\mathbf{r}(t) = r\mathbf{u}_r.$ As such, the equation for velocity becomes:
\begin{align*}
\\
\mathbf{v}(t) &= \frac{d\left(r\mathbf{u}_r\right)}{dt}
\\
\\
&= \frac{dr}{dt}\mathbf{u}_r + r\frac{d\mathbf{u}_r}{dt}
\end{align*}
Applying the chain rule, with $\frac{d\mathbf{u}_r}{dt} = \frac{d\mathbf{u}_r}{d\theta}\frac{d\theta}{dt},$ we can express velocity as a linear combination of the component vectors $\mathbf{u}_r$ and $\mathbf{u}_{\theta}:$
\begin{align*}
\\
\mathbf{v}(t) &= \frac{dr}{dt}\mathbf{u}_r + r\frac{d\theta}{dt}\mathbf{u}_{\theta}
\end{align*}
where the scalar factors $\frac{dr}{dt}$ and $r\frac{d\theta}{dt},$ respectively, are called the radial and transverse components of velocity.
For a particle moving along a circle, we know that the radius remains constant, thus the radial component of velocity is zero. Rewriting $\mathbf{v}(t)$ in terms of the component vectors $\mathbf{i}$ and $\mathbf{j},$ we get:
\begin{align*}
\\
\mathbf{v}(t) &= r\frac{d\theta}{dt}\mathbf{u}_{\theta}
\\
\\
&= \frac{d\theta}{dt}\left(-r\sin\theta\,\mathbf{i} + r\cos\theta\,\mathbf{j}\right)
\end{align*}
But as we saw in Exercise 18, this linear combination is equal to the cross product $\omega\mathbf{k} \times \mathbf{r},$ where $\omega = \frac{d\theta}{dt}.$ Thus, we have shown that there exists a vector $\pmb{\omega}(t)$ parallel to the $z$-axis satisfying $\mathbf{v}(t) = \pmb{\omega}(t) \times \mathbf{r}(t)$ for circular motion with center on the $z\text{-axis.}\quad \blacksquare$
(b) Calculating $\mathbf{a}(t) = \mathbf{v}'(t),$ we get:
\begin{align*}
\\
\mathbf{a}(t) &= \left[\pmb{\omega}(t) \times \mathbf{r}(t)\right]'
\\
\\
&= \left[\pmb{\alpha}(t) \times \mathbf{r}(t)\right] + \left[\pmb{\omega}(t) \times \mathbf{v}(t)\right]
\end{align*}
Expanding the rightmost term, we get:
\begin{align*}
\\
\pmb{\omega}(t) \times \mathbf{v}(t) &= -\omega^2r\cos\theta\,\mathbf{i} - \omega^2r\sin\theta\,\mathbf{j}
\\
\\
&= -\omega^2\mathbf{r}(t)
\end{align*}
where $\omega = \frac{d\theta}{dt}$ is the angular velocity. Then, we note that $\pmb{\omega}(t)$ is parallel to $\mathbf{k}$ and thus perpendicular to $\mathbf{r},$ making the term $\left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t) = 0.$ As such, the equation for acceleration becomes
\begin{align*}
\\
\mathbf{a}(t) &= \left[\pmb{\alpha}(t) \times \mathbf{r}(t)\right] + \left[\pmb{\omega}(t) \times \mathbf{v}(t)\right]
\\
\\
&= -\omega^2\mathbf{r}(t) + \left[\pmb{\alpha}(t) \times \mathbf{r}(t)\right]
\\
\\
&= \left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t) -\omega^2\mathbf{r}(t) + \pmb{\alpha}(t) \times \mathbf{r}(t)
\quad
\blacksquare
\end{align*}
(c) If the particle lies in the $xy$-plane, then the position vector is perpendicular to the $z$-axis, and thus $\left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t) = O.$ Additionally, if the angular velocity $\omega = \frac{d\theta}{dt}$ is constant for all $t,$ then $\frac{d^2\theta}{dt^2} = 0.$ But $\pmb{\alpha}(t) = \pmb{\omega}'(t) = \frac{d^2\theta}{dt^2}\mathbf{k},$ thus $\pmb{\alpha}(t) = O,$ making $\pmb{\alpha}(t) \times \mathbf{r}(t) = O.$ This leaves us with
\begin{align*}
\\
\mathbf{a}(t) &= \left[\pmb{\omega}(t) \cdot \mathbf{r}(t)\right]\pmb{\omega}(t) -\omega^2\mathbf{r}(t) + \pmb{\alpha}(t) \times \mathbf{r}(t)
\\
\\
&= -\omega^2\mathbf{r}(t)
\quad
\blacksquare
\end{align*}