- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
A particle moves in space so that its position at time $t$ has cylindrical coordinates $r = \sin t,$ $\theta = t,$ $z = \log \sec t,$ where $0 \leq t < \frac{1}{2}\pi.$
(a) Show that the curve lies on the cylinder with Cartesian equation $x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}.$
(b) Find a formula (in terms of $t$) for the angle which the velocity vector makes with $\,\mathbf{k}.$
-
(a) Translate the polar coordinates of $\mathbf{r}(t) = r\mathbf{u}_r$ into rectangular coordinates $\mathbf{r}(t) = r\left(\cos \theta\,\mathbf{i} + \sin \theta\,\mathbf{j}\right).$
(b) Use the double-angle identities for sine and cosine in the derivation of the position vector. Recall that $D(\log\sec t) = \tan t.$
-
(a) The curve with cylindrical coordinates $r = \sin t,$ $\theta = t,$ and $z = \log\sec t$ is described by the position vector $\mathbf{r}(t) = r\mathbf{u}_r + z\mathbf{k},$ whose rectangular coordinates $(x, y, z)$ are given by
$$
\begin{align*}
\\
(x, y, z) &= \left(r\cos\theta, r\sin\theta, \log\sec t\right)
\\
\\
&= \left(\sin t \cos t, \sin^2 t, \log\sec t\right).
\end{align*}
$$
We wish to show that $x$ and $y$ satisfy the equation $x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}.$
Using the double angle identities of the sine and cosine,
$$
\begin{align*}
\\
\sin 2t &= 2\sin t \cos t
\\
\\
\cos 2t &= 1 - 2\sin^2 t
\end{align*}
$$
$x$ and $y$ become:
$$
\begin{align*}
\\
x &= \frac{1}{2}\sin 2t,
\quad
y = \frac{1}{2}\left(1 - \cos 2t\right).
\end{align*}
$$
Plugging these values into the formula $x^2 + (y - \frac{1}{2})^2,$ we find that:
$$
\begin{align*}
\\
x^2 + \left(y - \frac{1}{2}\right)^2 &= \frac{1}{4}\left(\sin^2 2t + \cos^2 2t\right)
\\
\\
&= \frac{1}{4}
\quad
\blacksquare
\end{align*}
$$
(b) From part (a), we know that we can define $\mathbf{r}$ in rectangular coordinates as
$$
\begin{align*}
\\
\mathbf{r}(t) &= \frac{1}{2}\sin 2t\,\mathbf{i} + \frac{1}{2}\left(1 - \cos 2t\right)\,\mathbf{j} + \log\sec t\,\mathbf{k}.
\end{align*}
$$
Its derivative with respect to $t$ is then:
$$
\begin{align*}
\\
\mathbf{v}(t) &= \cos 2t\,\mathbf{i} + \sin 2t\,\mathbf{j} + \tan t\,\mathbf{k}.
\end{align*}
$$
To find the angle $\phi$ between $\mathbf{v}$ and $\mathbf{k},$ we first find $\cos \phi$
$$
\begin{align*}
\\
\cos\phi &= \frac{\mathbf{v}(t)\cdot\mathbf{k}}{\|\mathbf{v}(t)\|}
\\
\\
&= \frac{\tan t}{\sqrt{1 + \tan^2 t}}
\\
\\
&= \frac{\tan t}{\sec t}
\\
\\
&= \sin t
\end{align*}
$$
where $0 \leq t < \pi/2.$
Then, we apply the inverse cosine and the identity $\sin t = \cos \left(\frac{\pi}{2} - t\right)$to give us:
$$
\begin{align*}
\\
\arccos \phi &= \arccos( \sin t)
\\
\\
&= \arccos \cos\left(\frac{\pi}{2} - t\right)
\\
\\
&= \frac{\pi}{2} - t
\quad
\blacksquare
\end{align*}
$$