- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
If a curve is given by a polar equation $r = f(\theta),$ where $a \leq \theta \leq b \leq a + 2\pi,$ prove that the arc length is
$$
\begin{align*}
\\
\int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta
\end{align*}
$$
-
Given the polar function $r = f(\theta),$ the position vector in terms of its radial component is $\mathbf{r} = r\mathbf{u}_r.$ Its derivative with respect to $\theta$ is then
$$
\begin{align*}
\\
\mathbf{v} = \frac{dr}{d\theta}\mathbf{u}_r + r\mathbf{u}_{\theta}
\end{align*}
$$
where $\mathbf{u}_{\theta} = \frac{d\mathbf{u}_{r}}{d\theta},$ and where $\mathbf{u}_{\theta}$ and $\mathbf{u}_{r}$ are perpendicular unit vectors.
-
Let $\mathbf{r} = r\mathbf{u}_r$ be the radial position vector parameterized by $\theta,$ where $\mathbf{u}_r = (\cos\theta\,\mathbf{i} + \sin\theta\,\mathbf{j})$ is a unit vector with the same direction as $\mathbf{r}.$ Then, velocity is
$$
\begin{align*}
\\
\mathbf{v} &= \frac{dr}{d\theta}\mathbf{u}_r + r\mathbf{u}_{\theta}
\end{align*}
$$
where $\mathbf{u}_{\theta} = \frac{d\mathbf{u}_{r}}{d\theta} = (-\sin\theta\,\mathbf{i} + \cos\theta\,\mathbf{j})$ is a unit vector perpendicular to $\mathbf{u}_r.$ Speed $v(t)$ is
$$
\begin{align*}
\\
v(\theta) &= \sqrt{\mathbf{v} \cdot \mathbf{v}}
\\
\\
&= \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}.
\end{align*}
$$
Then, arc length $s$ from $\theta = a$ to $\theta = b$ is:
$$
\begin{align*}
\\
s &= \int_a^b v(\theta)\,d\theta
\\
\\
&= \int_a^b\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta
\quad
\blacksquare
\end{align*}
$$