- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.19 Exercises
-
The curve described by the polar equation $r = a(1 + \cos \theta),$ where $a > 0$ and $0 \leq \theta \leq 2\pi,$ is called a cardioid. Draw a graph of the cardioid $r = 4(1 + \cos \theta)$ and compute its arc length.
-
We proved in Exercise 4 that the arc length of a curve given by the polar equation $r = f(\theta)$ from $a$ to $b,$ where $0 \leq a \leq b \leq a + 2\pi$ is
$$
\begin{align*}
\\
\int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta.
\end{align*}
$$
-
Recall from Exercise 4 that the arc length of a curve given by the polar equation $r = f(\theta)$ from $a$ to $b,$ where $0 \leq a \leq b \leq a + 2\pi$ is
$$
\begin{align*}
\\
\int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}\,d\theta.
\end{align*}
$$
Thus, the arc length $s$ of the curve with polar equation $r = 4(1 + \cos\theta)$ from $\theta = 0$ to $\theta = 2\pi$ is
$$
\begin{align*}
\\
s &= \int_0^{2\pi} \sqrt{16(1 + \cos\theta)^2 + 16\sin^2\theta}\,d\theta
\\
\\
&= 4 \int_0^{2\pi} \sqrt{2 + 2 \cos\theta}\,d\theta.
\\
\\
\end{align*}
$$
Applying the the double angle identity for cosine $(\cos 2t = 1 - 2\sin^2 t)$ we get
$$
\begin{align*}
\\
4 \int_0^{2\pi} \sqrt{2 + 2 \cos\theta}\,d\theta &= 4\sqrt{2} \int_0^{2\pi}\sqrt{2 - 2\sin^2\left(\frac{\theta}{2}\right)}
\\
\\
&= 8\int_0^{2\pi}\sqrt{\cos^2\left(\frac{\theta}{2}\right)}\,d\theta
\\
\\
&= 8\int_0^{2\pi}\left|\cos\left(\frac{\theta}{2}\right)\right|\,d\theta
\\
\\
&= 8\int_0^{\pi}\cos\left(\frac{\theta}{2}\right)\,d\theta - 8\int_{\pi}^{2\pi}\cos\left(\frac{\theta}{2}\right)\,d\theta
\\
\\
&= 16\sin\left(\frac{\theta}{2}\right) \, \Biggr|_0^{\pi} - 16\sin\left(\frac{\theta}{2}\right)\, \Biggr|_{\pi}^{2\pi}
\\
\\
&= 32
\quad
\blacksquare
\end{align*}
$$