- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.7 Exercises
-
A particle moves along a hyperbola according to the equation
$$\textbf{r}(t) = a\cosh \omega t\,\mathbf{i} + b\sinh \omega t\,\mathbf{j}$$
where $\omega$ is a constant. Prove that the acceleration is centrifugal.
-
By definition, acceleration is centrifugal if the position vector and acceleration vector have the same direction (ie, away from the center of the hyperbola at the origin).
-
We wish to show that for some positive scalar $c,$ that $\mathbf{a} = c\,\mathbf{r}.$ Differentiating with respect to $t,$ we get
\begin{align*}
\mathbf{v}(t) &= \omega a\,\sinh \omega t\,\mathbf{i} + \omega b\,\cosh \omega t\,\mathbf{j}
\\
\mathbf{a}(t) &= \omega^2 a\,\cosh \omega t\,\mathbf{i} + \omega^2 b\,\sinh \omega t\,\mathbf{j}
\\ &= \omega^2\, \mathbf{r}{(t)}
\quad \blacksquare
\end{align*}