- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.7 Exercises
-
In each of Exercises 1 through 6, $\textbf{r}(t)$ denotes the position vector at time $t$ for a particle moving on a space curve. Determine the velocity $\textbf{v}(t)$ and acceleration $\textbf{a}(t)$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k};$ also, compute the speed $v(t).$
$$
\begin{align*}
\\
\textbf{r}(t) = t\mathbf{i} + \sin t\mathbf{j} + (1 - \cos t)\,\mathbf{k}
\end{align*}
$$
-
$$
\begin{align*}
\mathbf{v}(t) &= \mathbf{i} + \cos t\,\mathbf{j} + \sin t \,\mathbf{k}
\\
\\
\mathbf{a}(t) &= -\sin t\,\mathbf{j} + \cos t\,\mathbf{k}
\\
\\
v(t) &= \sqrt{2}
\end{align*}
$$