- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.7 Exercises
-
Referring to the helix in Exercise 7, prove that the velocity $v$ and acceleration $a$ are vectors of constant length, and that:
$$\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|^3} = \frac{a}{a^2 + b^2}$$
-
Recall from exercise 7 that
$$\mathbf{v}(t) = -a\omega\,\sin \omega t\,\mathbf{i} + a\omega \cos \omega t\,\mathbf{j} + b \omega\,\mathbf{k}$$
Taking its derivative, we get
$$\mathbf{a}(t) = -a\omega^2\,\cos \omega t\,\mathbf{i} - a\omega^2 \sin \omega t\,\mathbf{j}$$
Taking its norm, we see that $\|\mathbf{a}\| = \left[a^2\omega^4\left(\cos^2 \omega t + \sin^2 \omega t\right)\right]^{1/2} = a\omega^2.$ And we know from exercise 7 that $\mathbf{v}$ is of constant length $\omega \sqrt{a^2 + b^2}.$ This proves that $\mathbf{v}$ and $\mathbf{a}$ are of constant length.
To prove that
$$\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|^3} = \frac{a}{a^2 + b^2}$$
we first calculate $\mathbf{v} \times \mathbf{a}:$
$$\mathbf{v} \times \mathbf{a} = \left(ab\omega^3 \sin \omega t\right)\,\mathbf{i} - \left(ab\omega^3 \cos \omega t\right)\,\mathbf{j} + \left(a^2\omega^3 \sin^2 \omega t + a^2\omega^3 \cos^2 \omega t\right)\,\mathbf{k}$$
Taking its norm, we get
$$\displaylines{\|\mathbf{v} \times \mathbf{a}\| = \left(a^2b^2\omega^6 + a^4\omega^6\right)^{1/2}\\ = a\omega^3\sqrt{a^2 + b^2}}$$
Combining this result with $\|\mathbf{v}\|^3 = \omega^3\left(a^2 + b^2\right)^{3/2},$ we find that
$$\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|^3} = \frac{a}{a^2 + b^2}\quad \blacksquare$$