- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively, of Section 14.7. For the value of $t$ specified:
(a) express the unit tangent $T$ and the principal normal $N$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
(b) express the acceleration $\mathbf{a}$ as a linear combination of $T$ and $N.$
$$t = \pi$$
-
Recall from Section 14.7 #2:
$$
\begin{align*}
\\
\textbf{r}(t) &= \cos t\,\mathbf{i} + \sin t\,\mathbf{j} + e^t\,\mathbf{k}
\\
\\
\textbf{v}(t) &= -\text{sin}\,t\,\textbf{i} + \text{cos}\,t\,\textbf{j} + e^t\,\textbf{k}
\\
\\
\textbf{a}(t) &= -\text{cos}\,t\,\textbf{i} - \text{sin}\,t\,\textbf{j} + e^t\,\textbf{k}
\\
\\
v(t) &= \left(1 + e^{2t}\right)^{1/2}
\end{align*}
$$
-
(a) The unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
\\
&= \frac{-\sin t\,\mathbf{i} + \cos t\,\mathbf{j} + e^t\,\mathbf{k}}{\sqrt{1 + e^{2t}}}
\end{align*}
$$
Differentiating the unit tangent with respect to $t$ gives us:
$$
\begin{align*}
\\
T'(t) &= \frac{\left(1 + e^{2t}\right)\left[-\cos t\,\mathbf{i} -\sin t\,\mathbf{j} + e^t\,\mathbf{k}\right]}{\left(1 + e^{2t}\right)^{3/2}}
\\
&- \frac{e^{2t}\left[-\sin t\,\mathbf{i} + \cos t \,\mathbf{j} + e^t\,\mathbf{k}\right]}{\left(1 + e^{2t}\right)^{3/2}}
\end{align*}
$$
Evaluating at $t = \pi$
$$
\begin{align*}
\\
T'(\pi) &= \frac{\left(1 + e^{2\pi}\right)\left[\mathbf{i} + e^{\pi}\,\mathbf{k}\right] - e^{2\pi}\left[-\mathbf{j} + e^{\pi}\,\mathbf{k}\right]}{\left(1 + e^{2\pi}\right)^{3/2}}
\\
\\
&= \frac{\left(1 + e^{2\pi}\right)\mathbf{i} + e^{2\pi}\,\mathbf{j} + e^{\pi}\,\mathbf{k}}{\left(1 + e^{2\pi}\right)^{3/2}}
\end{align*}
$$
Its norm at $t = \pi$ is then:
$$
\begin{align*}
\\
\left\|T'(\pi)\right\| &= \frac{\left[\left(1 + e^{2\pi}\right)^2 + \left(e^{2\pi}\right)^2 + e^{2\pi}\right]^{1/2}}{\left(1 + e^{2\pi}\right)^{3/2}}
\\
\\
&= \frac{\left[\left(1 + e^{2\pi}\right)^2 + e^{2\pi}\left(1 + e^{2\pi}\right)\right]^{1/2}}{\left(1 + e^{2\pi}\right)^{3/2}}
\\
&= \frac{\left[\left(1 + e^{2\pi}\right)\left(1 + 2e^{2\pi}\right)\right]^{1/2}}{\left(1 + e^{2\pi}\right)^{3/2}}
\end{align*}
$$
The principal normal at $t = \pi$ is then:
$$
\begin{align*}
\\
N(\pi) &= \frac{T'(\pi)}{\|T'(\pi)\|}
\\
\\
&= \frac{\left(1 + e^{2\pi}\right)\mathbf{i} + e^{2\pi}\,\mathbf{j} + e^{\pi}\,\mathbf{k}}{\left[\left(1 + e^{2\pi}\right)\left(1 + 2e^{2\pi}\right)\right]^{1/2}}
\\
\\
\end{align*}
$$
Thus, at $t = \pi$ we have:
$$
\begin{align*}
\\
T(\pi) = \frac{-\mathbf{j} + e^{\pi}\,\mathbf{k}}{\sqrt{1 + e^{2\pi}}};
\quad
N(\pi) = \frac{\left(1 + e^{2\pi}\right)\mathbf{i} + e^{2\pi}\,\mathbf{j} + e^{\pi}\,\mathbf{k}}{\left[\left(1 + e^{2\pi}\right)\left(1 + 2e^{2\pi}\right)\right]^{1/2}}
\quad
\blacksquare
\\
\\
\end{align*}
$$
(b) Acceleration can be written component-wise as:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\end{align*}
$$
Differentiating speed $v(t)$ gives us:
$$
\begin{align*}
\\
v'(t) = e^{2t}\left(1 + e^{2t}\right)^{-1/2}
\end{align*}
$$
Evaluating $v(t)$ and $v'(t)$ at $t = \pi$
$$
\begin{align*}
\\
v(\pi) = \sqrt{1 + e^{2\pi}}; \quad v'(\pi) = e^{2\pi}\left(1 + e^{2\pi}\right)^{-1/2}
\end{align*}
$$
Combining this with the results of (a), we see that acceleration is:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\|T'(t)\|\,N(t)
\\
\\
&= \left(1 + e^{2\pi}\right)^{-1/2}\left[e^{2\pi}\,T + \left(1 + 2e^{2\pi}\right)^{1/2}\,N\right]\quad \blacksquare
\\
\\
\end{align*}
$$