- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively, of Section 14.7. For the value of $t$ specified:
(a) express the unit tangent $T$ and the principal normal $N$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
(b) express the acceleration $\mathbf{a}$ as a linear combination of $T$ and $N.$
$$
\begin{align*}
\\
t = 0
\end{align*}
$$
-
Recall from Section 14.7 #3:
$$
\begin{align*}
\\
\textbf{r}(t) &= 3t\cos t\mathbf{i} + 3t\sin t\mathbf{j} + 4t\,\mathbf{k}
\\
\\
\mathbf{v}(t) &= (3\,\text{cos}\,t - 3t\,\text{sin}\,t)\, \mathbf{i} + (3\,\text{sin}\,t + 3t\,\text{cos}\,t)\,\mathbf{j} + 4\,\textbf{k}
\\
\\
\mathbf{a}(t) &= (-6\,\text{sin}\,t - 3t\,\text{cos}\,t)\,\mathbf{i} + (6\,\text{cos}\,t - 3t\,\text{sin}\,t)\,\mathbf{j}
\\
\\
v(t) &= \sqrt{9t^2 + 25}
\end{align*}
$$
-
(a) The unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
\\
&= \frac{3(\cos t - t\sin t)\,\mathbf{i} + 3(\sin t + t\cos t)\,\mathbf{j} + 4\,\mathbf{k}}{\sqrt{9t^2 + 25}}
\end{align*}
$$
Evaluating at $t = 0$
$$
\begin{align*}
\\
T(0) &= \frac{3\,\mathbf{i} + 4\,\mathbf{k}}{5}
\end{align*}
$$
Differentiating the unit tangent with respect to $t$ gives us:
$$
\begin{align*}
\\
T'(t) &= \frac{3(-2\sin t - t\cos t)\,\mathbf{i} + 3(2\cos t - t\sin t)\,\mathbf{j}}{\sqrt{9t^2 + 25}}
\\
&-9t(9t^2 + 25)^{-3/2}\,\mathbf{v}(t)
\end{align*}
$$
Evaluating at $t = 0$
$$
\begin{align*}
\\
T'(0) &= \frac{6}{5}\,\mathbf{j}
\end{align*}
$$
Its norm at $t = 0$ is then:
$$
\begin{align*}
\\
\left\|T'(0)\right\| &= \frac{6}{5}
\end{align*}
$$
The principal normal at $t = 0$ is then:
$$
\begin{align*}
\\
N(0) &= \frac{T'(0)}{\|T'(0)\|}
\\
&= \mathbf{j}
\end{align*}
$$
Thus, at $t = 0$ we have:
$$
\begin{align*}
\\
T(0) = \frac{3}{5}\,\mathbf{i} + \frac{4}{5}\,\mathbf{k};
\quad
N(0) = \mathbf{j}
\quad
\blacksquare
\\
\\
\end{align*}
$$
(b) Acceleration can be written component-wise as:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\end{align*}
$$
Differentiating speed $v(t)$ gives us:
$$
\begin{align*}
\\
v'(t) = 9t(9t^2 + 25)^{-1/2}
\end{align*}
$$
Evaluating $v(t)$ and $v'(t)$ at $t = 0$
$$
\begin{align*}
\\
v(0) = 5, \quad v'(0) = 0
\end{align*}
$$
Combining this with the results of (a), we see that acceleration is:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\|T'(t)\|\,N(t)
\\
\\
&= 6\,N
\\
\\
\end{align*}
$$