- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively, of Section 14.7. For the value of $t$ specified:
(a) express the unit tangent $T$ and the principal normal $N$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
(b) express the acceleration $\mathbf{a}$ as a linear combination of $T$ and $N.$
$$t = \pi$$
-
Recall from Section 14.7 #4:
$$
\begin{align*}
\\
\textbf{r}(t) &= (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j} + 4\sin \frac{t}{2}\mathbf{k}
\\
\\
\textbf{v}(t) &= (1 - \cos t)\,\mathbf{i} + \sin t\,\mathbf{j} + 2\cos \frac{t}{2}\,\mathbf{k}
\\
\\
\textbf{a}(t) &= \sin t\,\mathbf{i} + \cos t\,\mathbf{j} - \sin \frac{t}{2}\,\mathbf{k}
\\
\\
v(t) &= \sqrt{1 - 2 \cos t + \cos^2 t + \sin^2 t + 4 \cos^2 \frac{t}{2}}
\\
\\
&= 2
\end{align*}
$$
-
(a) The unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
\\
&= \frac{(1 - \cos t)\,\mathbf{i} + \sin t\,\mathbf{j} + 2\cos \frac{t}{2}\,\mathbf{k}}
{2}
\end{align*}
$$
Evaluating at $t = \pi$
$$
\begin{align*}
\\
T(\pi) &= \mathbf{i}
\end{align*}
$$
Differentiating the unit tangent with respect to $t,$ noting that $v'(t) = 0$ for all $t$
$$
\begin{align*}
\\
T'(t) &= \frac{\mathbf{a}(t)}{v(t)} - \frac{v'(t)}{v^2(t)}\,\mathbf{v}(t)
\\
\\
&= \frac{\sin t\,\mathbf{i} + \cos t\,\mathbf{j} - \sin \frac{t}{2}\,\mathbf{k}}
{2}
\end{align*}
$$
Evaluating at $t = \pi$
$$
\begin{align*}
\\
T'(\pi) &= \frac{-\mathbf{j} - \mathbf{k}}
{2}
\end{align*}
$$
Its norm at $t = \pi$ is then:
$$
\begin{align*}
\\
\left\|T'(\pi)\right\| &= \frac{\sqrt{2}}{2}
\end{align*}
$$
The principal normal at $t = \pi$ is then:
$$
\begin{align*}
\\
N(\pi) &= \frac{T'(\pi)}{\|T'(\pi)\|}
\\
\\
&= -\frac{1}{2}\sqrt{2}\left(\,\mathbf{j} + \mathbf{k}\right)
\end{align*}
$$
Thus, at $t = \pi$ we have:
$$
\begin{align*}
\\
T(\pi) = \mathbf{i};
\quad
N(\pi) = -\frac{1}{2}\sqrt{2}\left(\,\mathbf{j} + \mathbf{k}\right)
\quad
\blacksquare
\\
\\
\end{align*}
$$
(b) Acceleration can be written component-wise as:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\end{align*}
$$
Differentiating speed $v(t)$ gives us:
$$
\begin{align*}
\\
v'(t) = 0
\end{align*}
$$
Evaluating $v(t)$ and $v'(t)$ at $t = \pi$
$$
\begin{align*}
\\
v(\pi) = 2, \quad v'(\pi) = 0
\end{align*}
$$
Combining this with the results of (a), we see that acceleration is:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\|T'(t)\|\,N(t)
\\
\\
&= \sqrt{2}\,N
\quad
\blacksquare
\\
\\
\end{align*}
$$