- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively, of Section 14.7. For the value of $t$ specified:
(a) express the unit tangent $T$ and the principal normal $N$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
(b) express the acceleration $\mathbf{a}$ as a linear combination of $T$ and $N.$
$$t = 1$$
-
Recall from Section 14.7 #5
$$
\begin{align*}
\\
\textbf{r}(t) &= 3t^2\mathbf{i} + 2t^3\mathbf{j} + 3t\mathbf{k}
\\
\\
\mathbf{v}(t) &= 6t\,\mathbf{i} + 6t^2\,\mathbf{j} +3\,\mathbf{k}
\\
\\
\mathbf{a}(t) &= 6\,\mathbf{i} + 12t\,\mathbf{j}
\\
\\
v(t) &= 3 + 6t^2
\end{align*}
$$
-
(a) The unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
\\
&= \frac{6t\,\mathbf{i} + 6t^2\,\mathbf{j} +3\,\mathbf{k}}
{6t^2 + 3}
\end{align*}
$$
Evaluating at $t = 1$
$$
\begin{align*}
\\
T(1) &= \frac{1}{3}\left(2\,\mathbf{i} + 2\,\mathbf{j} + \,\mathbf{k}\right)
\end{align*}
$$
Differentiating the unit tangent with respect to $t$ and evaluating at $t = 1$
$$
\begin{align*}
\\
T'(t) &= \frac{\mathbf{a}(t)}{v(t)} - \frac{v'(t)}{v^2(t)}\,\mathbf{v}(t)
\\
\\
&= \frac{6}{9}\,\mathbf{i} + \frac{12}{9}\,\mathbf{j}
- \frac{4}{9}\left(2\,\mathbf{i} + 2\,\mathbf{j} + \,\mathbf{k}\right)
\\
\\
&= \frac{2}{9}\,\mathbf{i} + \frac{4}{9}\,\mathbf{j} - \frac{4}{9}\,\mathbf{k}
\end{align*}
$$
Its norm at $t = 1$ is then:
$$
\begin{align*}
\\
\left\|T'(1)\right\| &= \frac{2}{3}
\end{align*}
$$
The principal normal at $t = 1$ is then:
$$
\begin{align*}
\\
N(1) &= \frac{T'(1)}{\|T'(1)\|}
\\
\\
&= \frac{1}{3}\left(-\mathbf{i} + 2\,\mathbf{j} - 2\,\mathbf{k}\right)
\end{align*}
$$
Thus, at $t = 1$ we have:
$$
\begin{align*}
\\
T(1) = \frac{1}{3}\left(2\,\mathbf{i} + 2\,\mathbf{j} + \,\mathbf{k}\right);
\quad
N(1) = \frac{1}{3}\left(-\mathbf{i} + 2\,\mathbf{j} - 2\,\mathbf{k}\right)
\quad
\blacksquare
\\
\\
\end{align*}
$$
Note: The back-of-book solution contains a typo for $N,$ missing the minus-sign in front of $\mathbf{i}.$
(b) Acceleration can be written component-wise as:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\end{align*}
$$
Differentiating speed $v(t)$ gives us:
$$
\begin{align*}
\\
v'(t) = 12t
\end{align*}
$$
Evaluating $v(t)$ $v'(t)$ and $\|T(t)\|$ at $t = 1$
$$
\begin{align*}
\\
v(1) = 9,
\quad
v'(1) = 12,
\quad
\|T(1)\| = \frac{2}{3}
\end{align*}
$$
Combining this with the results of (a), we see that acceleration is:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\|T'(t)\|\,N(t)
\\
\\
&= 12\,T + 6\,N
\quad
\blacksquare
\\
\\
\end{align*}
$$