- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Exercises 1 through 6 below refer to the motions described in Exercises 1 through 6, respectively, of Section 14.7. For the value of $t$ specified:
(a) express the unit tangent $T$ and the principal normal $N$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
(b) express the acceleration $\mathbf{a}$ as a linear combination of $T$ and $N.$
$$
\begin{align*}
\\
t = \frac{\pi}{4}
\end{align*}
$$
-
Recall from Section 14.7 #6:
$$
\begin{align*}
\\
\textbf{r}(t) &= t\mathbf{i} + \sin t\mathbf{j} + (1 - \cos t)\,\mathbf{k}
\\
\\
\mathbf{v}(t) &= \mathbf{i} + \cos t\,\mathbf{j} + \sin t \,\mathbf{k}
\\
\\
\mathbf{a}(t) &= -\sin t\,\mathbf{j} + \cos t\,\mathbf{k}
\\
\\
v(t) &= \sqrt{2}
\end{align*}
$$
-
(a) The unit tangent $T(t)$ is:
$$
\begin{align*}
\\
T(t) &= \frac{\mathbf{v}(t)}{v(t)}
\\
\\
&= \frac{\mathbf{i} + \cos t\,\mathbf{j} + \sin t \,\mathbf{k}}
{\sqrt{2}}
\end{align*}
$$
Evaluating at $t = \pi/4$
$$
\begin{align*}
\\
T\left(\frac{\pi}{4}\right)
&= \frac{\sqrt{2}}{2}\,\mathbf{i} + \frac{1}{2}\,\mathbf{j} + \frac{1}{2}\,\mathbf{k}
\end{align*}
$$
Differentiating the unit tangent with respect to $t$ and evaluating at $t = \pi/4,$ noting that $v'(t) = 0$ for all $t$
$$
\begin{align*}
\\
T'(t) &= \frac{\mathbf{a}(t)}{v(t)} - \frac{v'(t)}{v^2(t)}\,\mathbf{v}(t)
\\
\\
&= \frac{\sqrt{2}}{2}
\left(-\sin t\,\mathbf{j} + \cos t\,\mathbf{k}\right)
\\
\\
&= -\frac{1}{2}\,\mathbf{j} + \frac{1}{2}\,\mathbf{k}
\end{align*}
$$
Its norm at $t = \pi/4$ is then:
$$
\begin{align*}
\\
\left\|T'\left(\frac{\pi}{4}\right)\right\| &= \frac{\sqrt{2}}{2}
\end{align*}
$$
The principal normal at $t = \pi/4$ is then:
$$
\begin{align*}
\\
N\left(\frac{\pi}{4}\right) &= \frac{T'\left(\frac{\pi}{4}\right)}{\|T'\left(\frac{\pi}{4}\right)\|}
\\
\\
&= \frac{\sqrt{2}}{2}\left(-\mathbf{j} + \,\mathbf{k}\right)
\end{align*}
$$
Thus, at $t = \pi/4$ we have:
$$
\begin{align*}
\\
T\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}\,\mathbf{i} + \frac{1}{2}\,\mathbf{j} + \frac{1}{2}\,\mathbf{k};
\quad
N\left(\frac{\pi}{4}\right) = -\frac{1}{2}\sqrt{2}\,\mathbf{j} + \frac{1}{2}\sqrt{2}\,\mathbf{k}
\quad
\blacksquare
\\
\\
\end{align*}
$$
(b) Acceleration can be written component-wise as:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\end{align*}
$$
Differentiating speed $v(t)$ gives us:
$$
\begin{align*}
\\
v'(t) = 0
\end{align*}
$$
Evaluating $v(t)$ $v'(t)$ and $\|T(t)\|$ at $t = \pi/4$
$$
\begin{align*}
\\
v\left(\frac{\pi}{4}\right) = \sqrt{2},
\quad
v'\left(\frac{\pi}{4}\right) = 0,
\quad
\left\|T\left(\frac{\pi}{4}\right)\right\| = \frac{1}{2}\sqrt{2}
\end{align*}
$$
Combining this with the results of (a), we see that acceleration is:
$$
\begin{align*}
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\,T'(t)
\\
\mathbf{a}(t) &= v'(t)\,T(t) + v(t)\|T'(t)\|\,N(t)
\\
\\
&= N
\quad
\blacksquare
\\
\\
\end{align*}
$$