- Calculus, Volume 1: One Variable Calculus, with an Introduction to Linear Algebra
- Tom M. Apostol
- Second Edition
- 1967
- 978-1-119-49673-1
14.9 Exercises
-
Prove that the normal component of the acceleration vector is $\|\mathbf{v} \times \mathbf{a}\|/\|\mathbf{v}\|.$
-
Use Lagrange's identity for the norm of a cross product
$$
\|A \times B\|^2 = \|A\|^2\|B\|^2 - \left(A \cdot B\right)^2
$$
-
Recall that by Lagrange's identity for the norm of a cross product,
$$
\|\mathbf{v} \times \mathbf{a}\|^2 = \|\mathbf{v}\|^2 \|\mathbf{a}\|^2 - \left(\mathbf{v} \cdot \mathbf{a}\right)^2
$$
Dividing both sides by $\|\mathbf{v}\|^2$ and taking the square root, we get:
$$
\begin{align*}
\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} &= \left(\|\mathbf{a}\|^2 - \left(\mathbf{a} \cdot T\right)^2\right)^{1/2} \\
\end{align*}
$$
Where $T$ is the unit tangent $\mathbf{v}/\|\mathbf{v}\|$
Thus, we wish to show that the normal component of the acceleration vector is equal to
$$
\left(\mathbf{a} \cdot \mathbf{a} - \left(\mathbf{a} \cdot T\right)^2\right)^{1/2}
$$
First, we recall that component-wise, acceleration is defined as
$$
\mathbf{a}(t) = v'(t)T(t) + v(t)\|T'(t)\|N(t)
$$
where $N(t) = T'(t)/\|T'(t)\|$ is the principal normal vector.
The normal component of the acceleration vector (ie, the coefficient of the principal normal) is:
$$
\begin{align*}
v\|T'\| &= v\left\Vert\left(\frac{\mathbf{v}}{v}\right)'\right\Vert\\
&= v\left\Vert\frac{\mathbf{v}'}{v} - \frac{v'}{v^2}\mathbf{v}\right\Vert\\
&= \|\mathbf{a} - v'T\|
\end{align*}
$$
But we know by definition that $T$ and $N$ are perpendicular. If we take the dot product $\mathbf{a} \cdot T,$ noting that $T$ has a length of 1, we get:
$$
\begin{align*}
\mathbf{a} \cdot T &= v'(T \cdot T) + v(N \cdot T)\\
&= v'
\end{align*}
$$
This means that we can rewrite $\|\mathbf{a} - v'T\|$ as:
$$
\begin{align*}
\|\mathbf{a} - v'T\| = \|\mathbf{a} - (\mathbf{a} \cdot T) T\|
\end{align*}
$$
Now, we expand the right-hand side of the above equation, recalling that $T \cdot T = 1,$ to give us:
$$
\begin{align*}
\|\mathbf{a} - (\mathbf{a} \cdot T) T\| &= \left(\left(\mathbf{a} - \left(\mathbf{a} \cdot T\right)T\right) \cdot \left(\mathbf{a} - \left(\mathbf{a} \cdot T\right)T\right)\right)^{1/2} \\
&= \left(\mathbf{a} \cdot \mathbf{a} - 2\left(\mathbf{a} \cdot T\right)^2 + \left(\mathbf{a} \cdot T\right)^2 (T \cdot T)\right)^{1/2} \\
&= \left(\mathbf{a} \cdot \mathbf{a} - \left(\mathbf{a} \cdot T\right)^2\right)^{1/2}
\end{align*}
$$
Thus, we have proven that
$$
v\|T'\| = \frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} \quad \blacksquare
$$