
- Calculus, Volume 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability
- Tom M. Apostol
- Second Edition
- 1991
- 978-1-119-49676-2
1.10 Exercises
- $x + y = 1.$
-
Recall from Section 1.6, Theorem 1.4, that a nonempty subset $S$ of a linear space $V$ is a subspace if and only if it satisfies the closure axioms:
$\text{Axiom 1.}\quad$Closure under addition. $\quad$ For every pair of elements $x$ and $y$ in $V$ there corresponds a unique element in $V$ called the sum of $x$ and $y,$ denoted by $x + y.$
$\text{Axiom 2.}\quad$Closure under multiplication by real numbers. $\quad$ For every $x$ in $V$ and every real number $a$ there corresponds an element in $V$ called the product of $a$ and $x,$ denoted by $ax.$
The dimension of a basis for a linear space is the number of elements in the basis. - $\text{Counterexample.}\quad$ Let $A = (1, 0, 0)$ and $B = (0, 1, 0)$ be two elements of $S.$ Then, their sum $A + B$ is \begin{align*} A + B &= (1, 1, 0) \end{align*} from which we can see that $x + y \neq 1,$ which violates closure under addition. Thus, $S$ is not a subspace of $V_3. \quad \blacksquare$
In each of Exercises 1 through 10, let $S$ denote the set of all vectors $(x, y, z)$ in $V_3$ whose components satisfy the condition given. Determine whether $S$ is a subspace of $V_3.$ If $S$ is a subspace, compute $\dim S.$