Mathematical Immaturity

2.12 Exercises

$\quad$ In all exercises involving the vector space $V_n,$ the usual basis of unit coordinate vectors is to be chosen, unless another basis is specifically mentioned. In exercises concerned with the matrix of a linear transformation $T: V \rightarrow W$ where $V = W,$ we take the same basis in both $V$ and $W$ unless another choice is indicated.

3. $\quad$ A linear transformation $T: V_2 \rightarrow V_2$ maps the basis vectors $\mathbf{i}$ and $\mathbf{j}$ as follows: \begin{align*} T(\mathbf{i}) &= \mathbf{i} + \mathbf{j}, \quad T(\mathbf{j}) = \mathbf{2i} - \mathbf{j} \end{align*} (a) $\quad$ Compute $T(3\mathbf{i} - 4\mathbf{j})$ and $T^2(3\mathbf{i} - 4\mathbf{j})$ in terms of $\mathbf{i}$ and $\mathbf{j}.$
(b) $\quad$ Determine the matrix of $T$ and of $T^2$.
(c) $\quad$ Solve part (b) if the basis $(\mathbf{i}, \mathbf{j})$ is replaced by $(e_1, e_2),$ where $e_1 = \mathbf{i} - \mathbf{j},$ $e_2 = 3\mathbf{i} + \mathbf{j}.$

Solution. $\quad$
(a) $\quad$ Compute $T(3\mathbf{i} - 4\mathbf{j})$ and $T^2(3\mathbf{i} - 4\mathbf{j})$ in terms of $\mathbf{i}$ and $\mathbf{j}.$
$\quad$ Because $T$ is a linear transformation, we have \begin{align*} T(3\mathbf{i} - 4\mathbf{j}) &= 3T(\mathbf{i}) - 4T(\mathbf{j}) \\ &= 3(\mathbf{i} + \mathbf{j}) - 4(2\mathbf{i} - \mathbf{j}) \\ &= 7\mathbf{j} - 5\mathbf{i} \\ \\ T^2(3\mathbf{i} - 4\mathbf{j}) &= T[T(3\mathbf{i} - 4\mathbf{j})] \\ &= T(7\mathbf{j} - 5\mathbf{i}) \\ &= 7T(\mathbf{j}) - 5T(\mathbf{i}) \\ &= 7(\mathbf{2i} - \mathbf{j}) - 5(\mathbf{i} + \mathbf{j}) \\ &= 9\mathbf{i} - 12\mathbf{j} \quad \blacksquare \end{align*}

(b) $\quad$ Determine the matrix of $T$ and of $T^2$.
$\quad$ If we set $(e_1, e_2)$ and $(w_1, w_2)$ as the respective bases of $V$ and $W,$ with $e_1 = w_1 = \mathbf{i}$ and $e_2 = w_2 = \mathbf{j},$ then, denoting the matrix of $T$ by $(t_{ik}),$we have \begin{align*} T(e_1) &= t_{11}w_1 + t_{21}w_2 \\ &= w_1 + w_2 \\ T(e_2) &= t_{12}w_1 + t_{22}w_2 \\ &= 2w_1 - w_2 \end{align*} From this, we can see that the matrix of $T$ is \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} Then, if we set $u_1 = \mathbf{i}$ and $u_2 = \mathbf{j}$ as the basis elements of $T^2,$ applying $T$ once more, we get: \begin{align*} \\ T^2(e_1) &= T[T(e_1)] \\ &= T[w_1 + w_2] \\ &= T(w_1) + T(w_2) \\ &= T(\mathbf{i}) + T(\mathbf{j}) \\ &= (\mathbf{i} + \mathbf{j}) + (2\mathbf{i} - \mathbf{j}) \\ &= 3u_1 + 0u_2 \\ &= v_{11}u_1 + v_{21}u_2 \\ \\ T^2(e_2) &= T[T(e_2)] \\ &= T[2w_1 - w_2] \\ &= 2T(w_1) - T(w_2) \\ &= 2T(\mathbf{i}) - T(\mathbf{j}) \\ &= 2(\mathbf{i} + \mathbf{j}) - (2\mathbf{i} - \mathbf{j}) \\ &= 0u_1 + 3u_2 \\ &= v_{12}u_1 + v_{22}u_2 \end{align*} where $(v_{ik})$ denotes the matrix of $T^2,$ giving us the following matrix representation: \begin{align*} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \quad \blacksquare \end{align*}

(c) $\quad$ Solve part (b) if the basis $(\mathbf{i}, \mathbf{j})$ is replaced by $(e_1, e_2),$ where $e_1 = \mathbf{i} - \mathbf{j},$ $e_2 = 3\mathbf{i} + \mathbf{j}.$
$\quad$ If we replace the basis elements of $V$ and $W$ by $e_1$ and $e_2$ as described, keeping the transformation the same, we get: \begin{align*} T(e_1) &= T(\mathbf{i} - \mathbf{j}) \\ &= T(\mathbf{i}) - T(\mathbf{j}) \\ &= (\mathbf{i} + \mathbf{j}) - (\mathbf{2i} - \mathbf{j}) \\ &= -\mathbf{i} + 2\mathbf{j} \\ &= t_{11}(\mathbf{i} - \mathbf{j}) + t_{21}(3\mathbf{i} + \mathbf{j}) \\ \\ T(e_2) &= T(3\mathbf{i} + \mathbf{j}) \\ &= 3T(\mathbf{i}) + T(\mathbf{j}) \\ &= 3(\mathbf{i} + \mathbf{j}) + (\mathbf{2i} - \mathbf{j}) \\ &= 5\mathbf{i} + 2\mathbf{j} \\ &= t_{12}(\mathbf{i} - \mathbf{j}) + t_{22}(3\mathbf{i} + \mathbf{j}) \end{align*} which gives us the following systems of equations for the components of $(t_{ik}):$ \begin{align*} t_{11} + 3t_{21} &= -1 \\ t_{21} - t_{11} &= 2 \\ \\ t_{12} + 3t_{22} &= 5 \\ t_{22} - t_{12} &= 2 \end{align*} To find the matrix of $T$ relative to the ordered basis $(e_1, e_2),$ we solve for the components $t_{ik}:$ \begin{align*} t_{11} &= -\frac{7}{4}, \quad t_{21} = \frac{1}{4}, \quad t_{12} = -\frac{1}{4}, \quad t_{22} = \frac{7}{4} \end{align*} which gives us the matrix: \begin{align*} (t_{ik}) &= \begin{bmatrix} -\frac{7}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{7}{4} \end{bmatrix} \end{align*} Applying $T$ once more, maintaining the same basis elements $e_1$ and $e_2,$ we get: \begin{align*} T^2(e_1) &= T[T(e_1)] \\ &= T(-\mathbf{i} + 2\mathbf{j}) \\ &= -T(\mathbf{i}) + 2T(\mathbf{j}) \\ &= -(\mathbf{i} + \mathbf{j}) + 2(\mathbf{2i} - \mathbf{j}) \\ &= 3\mathbf{i} - 3\mathbf{j} \\ &= v_{11}(\mathbf{i} - \mathbf{j}) + v_{21}(3\mathbf{i} + \mathbf{j}) \\ \\ T^2(e_2) &= T[T(e_2)] \\ &= T(5\mathbf{i} + 2\mathbf{j}) \\ &= 5T(\mathbf{i}) + 2T(\mathbf{j}) \\ &= 5(\mathbf{i} + \mathbf{j}) + 2(\mathbf{2i} - \mathbf{j}) \\ &= 9\mathbf{i} + 3\mathbf{j} \\ &= v_{12}(\mathbf{i} - \mathbf{j}) + v_{22}(3\mathbf{i} + \mathbf{j}) \end{align*} which gives the following systems of equations for the components $v_{ik}$ of the matrix representation of $T^2:$ \begin{align*} v_{11} + 3v_{21} &= 3 \\ v_{21} - v_{11} &= -3 \\ \\ v_{12} + 3v_{22} &= 9 \\ v_{22} - v_{12} &= 3 \end{align*} Solving the systems gives us the components: \begin{align*} v_{11} &= 3, \quad v_{21} = 0, \quad v_{12} = 0, \quad v_{22} = 3 \end{align*} giving us the matrix representation of $T^2:$ \begin{align*} (v_{ik}) &= \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \quad \blacksquare \end{align*}