Mathematical Immaturity

2.12 Exercises

$\quad$ In all exercises involving the vector space $V_n,$ the usual basis of unit coordinate vectors is to be chosen, unless another basis is specifically mentioned. In exercises concerned with the matrix of a linear transformation $T: V \rightarrow W$ where $V = W,$ we take the same basis in both $V$ and $W$ unless another choice is indicated.

7. $\quad$ A linear transformation $T: V_3 \rightarrow V_2$ maps the basis vectors as follows: \begin{align*} T(\mathbf{i}) &= (0, 0), \quad T(\mathbf{j}) = (1, 1), \quad T(\mathbf{k}) = (1, -1) \end{align*} (a) $\quad$ Compute $T(4\mathbf{i} - \mathbf{j} + \mathbf{k})$ and determine the nullity and rank of $T.$
(b) $\quad$ Determine the matrix of $T.$
(c) $\quad$ Use the basis $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ in $V_2$ and the basis $(w_1, w_2)$ in $V_2$ where $w_1 = (1, 1),$ $w_2 = (1, 2).$ Determine the matrix of $T$ relative to these bases
(d) $\quad$ Find bases $(e_1, e_2, e_3)$ for $V_2$ and $(w_1, w_2)$ for $V_2$ relative to which the matrix of $T$ will be in diagonal form.

Solution. $\quad$
(a) $\quad$ Compute $T(4\mathbf{i} - \mathbf{j} + \mathbf{k})$ and determine the nullity and rank of $T.$ \begin{align*} T(4\mathbf{i} - \mathbf{j} + \mathbf{k}) &= 4T(\mathbf{i}) - T(\mathbf{j}) + T(\mathbf{k}) \\ &= 4(0, 0) - (1, 1) + (1, -1) \\ &= (0, -2) \\ &= 0(\mathbf{i}) - 2(\mathbf{j}) \end{align*} To compute the nullity and rank of $T,$ we will first find the null space of $T.$ To do so, we must find the set of $x = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$ in $V_3$ such that $$T(x) = c_1T(\mathbf{i}) + c_2T(\mathbf{j}) + c_3T(\mathbf{k}) = O$$ where $c_1, c_2, c_3$ are real scalars. Using the given equations for $T(\mathbf{i}),$ $T(\mathbf{j}),$ and $T(\mathbf{k}),$ we get \begin{align*} T(x) &= c_1T(\mathbf{i}) + c_2T(\mathbf{j}) + c_3T(\mathbf{k}) \\ &= c_1(0, 0) + c_2(1, 1) + c_3(1, -1) \end{align*} Setting this equal to zero, we get the following system of equations for $c_1, c_2,$ and $c_3:$ \begin{align*} 0(c_1) + c_2 + c_3 &= 0 \\ 0(c_1) + c_2 - c_3 &= 0 \end{align*} This system is satisfied when $c_2 = c_3 = 0,$ with arbitrary $c_1.$ In other words, $N(T)$ is the set of $x$ in $V_3$ of the form $x = c_1\mathbf{i}.$ Moreover, because $T(x) = O$ implies $c_2 = c_3 = 0,$ this means that $T(\mathbf{j})$ and $T(\mathbf{k})$ are independent elements of $T(V_3).$ As such, $T$ has nullity $1$ and rank $\geq 2.$ But by the nullity plus rank theorem, we know that $\dim N(T) + \dim T(V_3)= \dim V_3 = 3,$ giving us $$ \text{nullity 1} \quad \text{rank 2}. \quad \blacksquare$$

(b) $\quad$ Determine the matrix of $T.$

$\quad$ Setting $(\mathbf{i}, \mathbf{j})$ as the basis of $T(V_3),$ the transformations of $\mathbf{i},$ $\mathbf{j},$ and $\mathbf{k}$ can be rewritten as follows: \begin{align*} T(\mathbf{i}) &= (0, 0) \\ &= 0\mathbf{i} + 0\mathbf{j} \\ \\ T(\mathbf{j}) &= (1, 1) \\ &= \mathbf{i} + \mathbf{j} \\ \\ T(\mathbf{k}) &= (1, -1) \\ &= \mathbf{i} - \mathbf{k} \end{align*} Then, the matrix of $T$ is the $2 \times 3$ array whose elements $t_{ik}$ are the scalars multiplying the $i^{th}$ component of $T(e_k),$ where $e_k$ is the $k^{th}$ basis element of $V_3.$ In other words, we have \begin{align*} (t_{ik}) &= \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \quad \blacksquare \end{align*}

(c) $\quad$ Use the basis $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ in $V_3$ and the basis $(w_1, w_2)$ in $V_2$ where $w_1 = (1, 1),$ $w_2 = (1, 2).$ Determine the matrix of $T$ relative to these bases.

$\quad$ Using the revised basis for $V_2,$ we have the following transformations of the basis elements of $V_3:$ \begin{align*} T(\mathbf{i}) &= (0, 0) \\ &= 0w_1 + 0w_2 \\ \\ T(\mathbf{j}) &= (1, 1) \\ &= w_1 + 0w_2 \\ \\ T(\mathbf{k}) &= (1, -1) \\ &= 3w_1 - 2w_2 \end{align*} This gives us the following matrix for $T:$ \begin{align*} (t_{ik}) &= \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix} \quad \blacksquare \end{align*}

(d) $\quad$ Find bases $(e_1, e_2, e_3)$ for $V_3$ and $(w_1, w_2)$ for $V_2$ relative to which the matrix of $T$ will be in diagonal form.

$\quad$ We wish to find bases such that the matrix $(t_{ik})$ for $T$ is given by: \begin{align*} (t_{ik}) &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{align*} This matrix corresponds to the transformations: \begin{align*} T(e_1) &= 1(w_1) + 0(w_2) \\ \\ T(e_2) &= 0(w_1) + 1(w_2) \\ \\ T(e_3) &= 0(w_1) + 0(w_2) \end{align*} These equations are satisfied with the following basis elements: \begin{align*} e_1 &= \mathbf{j},\ e_2 = \mathbf{k},\ e_3 = \mathbf{i} \qquad w_1 = (1, 1),\ w_2 = (1, -1). \quad \blacksquare \end{align*}