Mathematical Immaturity

2.16 Exercises

12. $\quad$ The equation $A^2 = I$ is satisfied by each of the 2 x 2 matrices $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ c & -1 \end{bmatrix}, \quad \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix},$$ where $b$ and $c$ are arbitrary real numbers. Find all 2 x 2 matrices $A$ such that $A^2 = I.$

Solution. $\quad$ Let $A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}$ be a $2 \times 2$ matrix such that \begin{align*} A^2 &= \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & cb + d^2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \end{align*} This gives us the following system of equations \begin{align*} a^2 + bc &= 1 \\ (a + d)b &= 0 \\ (a + d)c &= 0 \\ cb + d^2 &= 1 \end{align*} The middle two equations give us two potential cases:

(1) $\quad$ $(a + d) \neq 0.$ Then, $b = c = 0,$ and $a = d = 1$ or $a = d = -1.$ In other words, if $a + d \neq 0,$ $A = I$ or $A = -I.$

(2) $\quad$ $(a + d) = 0.$ $\quad$ Then, $d = -a$ and $a$ is a solution to $a^2 = 1 - bc$ for arbitrary $b$ and $c. \quad \blacksquare$