Mathematical Immaturity

2.20 Exercises

Determine the inverse of each of the matrices in Exercises 12 through 16.

16. $\quad$ \begin{align*} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ \end{bmatrix} \end{align*}

Solution. $\quad$ First, we initialize the following augmented matrix. \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ \end{array} \end{bmatrix} \end{align*} Then, we apply the Gauss-Jordan elimination process to turn the left side of the array into the $6 \times 6$ identity matrix, and the right side into the inverse of the given matrix. \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ \end{array} \end{bmatrix} \end{align*} \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\\ \end{array} \end{bmatrix} \end{align*} \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 2 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & -3 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 1 & 9 & 0 & -3 & 0 & 1 & 0\\ \end{array} \end{bmatrix} \end{align*} \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 2\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 & 0 & 0 & -3 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 1 & 9 & 0 & -3 & 0 & 1 & 0\\ \end{array} \end{bmatrix} \end{align*} \begin{align*} \begin{bmatrix} \begin{array}{cccccc|cccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & -1 & 0 & 1\\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 & 0 & 0 & -3 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 0 & 0 & 1 & 9 & 0 & -3 & 0 & 1 & 0\\ \end{array} \end{bmatrix} \end{align*} This gives us the inverse $\begin{bmatrix} \begin{array}{cccccc} 0 & \frac{1}{2} & 0 & -1 & 0 & 1\\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1\\ -3 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}\\ 9 & 0 & -3 & 0 & 1 & 0\\ \end{array} \end{bmatrix}. \quad \blacksquare$