Mathematical Immaturity

3.6. $\quad$ Exercises

$\quad$ In this set of exercises you may assume existence of a determinant function. Determinants of order three may be computed by Equation (3.2).

\begin{align*} (3.2) \qquad \det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} &= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{align*}

2. $\quad$ If $\det \begin{bmatrix} x & y & z \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} = 1,$ compute the determinant of each of the following matrices:

\begin{align*} \text{(a)} \quad \begin{bmatrix} 2x & 2y & 2z \\ \frac{3}{2} & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \text{(b)} \quad \begin{bmatrix} x & y & z \\ 3x + 3 & 3y & 3z + 2 \\ x + 1 & y + 1 & z + 1 \end{bmatrix}, \quad \text{(c)} \quad \begin{bmatrix} x - 1 & y - 1 & z - 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}. \end{align*}

Solution. $\quad$ We recall from Section 4 that when the row operations of the Gauss-Jordan elimination process are applied to a matrix,

$\quad$ (1) $\quad$ Interchanging two equations;
$\quad$ (2) $\quad$ Multiplying all the terms of an equation by a nonzero scalar;
$\quad$ (3) $\quad$ Adding one equation to a multiple of another.

Its determinant changes as follows:

$\quad$ When (1) is applied to a matrix $A,$ the sign of its determinant changes. When (2) is applied to $A,$ for some nonzero scalar $c,$ the determinant is multiplied by $c.$ When (3) is applied, the determinant remains unchanged.

Accordingly, if $\det \begin{bmatrix} x & y & z \\ 3 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} = 1,$ we have the following:

(a) $\quad$ $\det \begin{bmatrix} 2x & 2y & 2z \\ \frac{3}{2} & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 1.$

(b) $\quad \begin{bmatrix} x & y & z \\ 3x + 3 & 3y & 3z + 2 \\ x + 1 & y + 1 & z + 1 \end{bmatrix} = 1.$

(c) $\quad$ $\begin{bmatrix} x - 1 & y - 1 & z - 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} = 1.$

$\quad$ As we can see in all three examples, the determinant remains unchanged. In part (a), the two row-wise scalar multiplications cancel eachother, and in parts (b) and (c), only the third row operation is applied to the matrices, leaving the determinant unchanged.