Mathematical Immaturity

3.11. $\quad$ Exercises

1. $\quad$ For each of the following statements about square matrices, give a proof or exhibit a counter example.
(a) $\quad$ $\det (A + B) = \det A + \det B.$
(b) $\quad$ $\det \{(A + B)^2\} = \{\det (A + B)\}^2$
(c) $\quad$ $\det \{(A + B)^2\} = \det (A^2 + 2AB + B^2)$
(d) $\quad$ $\det \{(A + B)^3\} = \det (A^3 + B^3).$

Solution. $\quad$

(a) $\quad$ $\det (A + B) = \det A + \det B.$

Counterexample. $\quad$ Let $A = I_n$ and $B = -I_n,$ where $I_n$ is the $n \times n$ identity matrix $n$ and $n$ is an even number. Then, $\det (A + B) = 0$ but $\det A + \det B = 2. \quad \blacksquare$

(b) $\quad$ $\det \{(A + B)^2\} = \{\det (A + B)\}^2$

Proof. $\quad$ By the product formula for determinants, we find that $$\det\{(A+B)^2\} = \det\{(A+B)(A+B)\} = \det (A+B) \det(A+B) = \{\det(A+B)\}^2. \quad \blacksquare$$

(c) $\quad$ $\det \{(A + B)^2\} = \det (A^2 + 2AB + B^2)$

Counterexample. $\quad$ Let $A = \begin{bmatrix}1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix}1 & 0 \\ 1 & 1 \end{bmatrix}.$ We have \begin{align*} (A + B)^2 &= \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \\ &= \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \\ \\ A^2 + 2AB + B^2 &= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 6 & 4 \\ 4 & 4 \end{bmatrix} \end{align*} From this, we can see that $$\det \{(A + B)^2\} \neq \det (A^2 + 2AB + B^2). \quad \blacksquare$$

(d) $\quad$ $\det \{(A + B)^3\} = \det (A^3 + B^3).$

Counterexample. $\quad$ Let $A = \begin{bmatrix}1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix}1 & 0 \\ 1 & 1 \end{bmatrix}.$ We have \begin{align*} (A + B)^3 &= \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \\ &= \begin{bmatrix} 14 & 13 \\ 13 & 14 \end{bmatrix} \\ \\ A^3 + B^3 &= \begin{bmatrix}1 & 2 \\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & 1\end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix} \end{align*} As we can see, $\det\{(A + B)^3\} \neq \det(A^3 + B^3). \quad \blacksquare$