Mathematical Immaturity

3.11. $\quad$ Exercises

7. $\quad$ Use Theorem 3.6 to determine whether the following sets of vectors are linearly dependent or independent.
(a) $\quad$ $A_1 = (1, -1, 0),$ $A_2 = (0, 1, -1),$ $A_3 = (2, 3, -1).$
(b) $\quad$ $A_1 = (1, -1, 2, 1),$ $A_2 = (-1, 2, -1, 0),$ $A_3 = (3, -1, 1, 0),$ $A_4 = (1, 0, 0, 1).$
(c) $\quad$ $A_1 = (1, 0, 0, 0, 1),$ $A_2 = (1, 1, 0, 0, 0),$ $A_3 = (1, 0, 1, 0, 1),$ $A_4 = (1, 1, 0, 1, 1),$ $A_5 = (0, 1, 0, 1, 0).$

Solution. $\quad$ We recall from Theorem 3.6 that a set of $n$ vectors $A_1, \dots, A_n$ in $n$-space is independent if and only if $d(A_1, \dots, A_n) \neq 0.$

(a) $\quad$ $A_1 = (1, -1, 0),$ $A_2 = (0, 1, -1),$ $A_3 = (2, 3, -1).$

We can write $d(A_1, A_2, A_3)$ as \begin{align*} \det \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 3 & -1 \\ \end{bmatrix} \end{align*} This is equivalent to \begin{align*} - \det \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -2 & -3 & 1 \\ \end{bmatrix} \\ \\ - \det \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -5 & 1 \\ \end{bmatrix} \\ \\ - \det \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -4 \\ \end{bmatrix} &= 4. \end{align*} From this, we can see that the set of vectors $A_1, A_2, A_3$ form an upper triangular matrix with determinant $4.$ Thus, the set is independent.

(b) $\quad$ $A_1 = (1, -1, 2, 1),$ $A_2 = (-1, 2, -1, 0),$ $A_3 = (3, -1, 1, 0),$ $A_4 = (1, 0, 0, 1).$ We can express $d(A_1, A_2, A_3, A_4)$ as \begin{align*} \det \begin{bmatrix} 1 & -1 & 2 & 1 \\ -1 & 2 & -1 & 0 \\ 3 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \\ \\ \det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 3 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \\ \\ \det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ -3 & 1 & -1 & 0 \\ -1 & 0 & 0 & -1 \end{bmatrix} \\ \\ \det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -2 & 5 & 3 \\ 0 & -1 & 2 & 0 \end{bmatrix} \\ \\ \det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 7 & 5 \\ 0 & 0 & 3 & 1 \end{bmatrix} \\ \\ \frac{-1}{21}\det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 21 & 15 \\ 0 & 0 & -21 & -7 \end{bmatrix} \\ \\ \frac{-1}{21}\det \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 21 & 15 \\ 0 & 0 & 0 & 8 \end{bmatrix} &= -8. \end{align*} As we can see, this set of vectors forms an upper-triangular matrix with determinant $-8.$ Thus, the set is independent.

(c) $\quad$ $A_1 = (1, 0, 0, 0, 1),$ $A_2 = (1, 1, 0, 0, 0),$ $A_3 = (1, 0, 1, 0, 1),$ $A_4 = (1, 1, 0, 1, 1),$ $A_5 = (0, 1, 0, 1, 0).$ We can express $d(A_1, A_2, A_3, A_4, A_5)$ as \begin{align*} \det \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ \end{bmatrix} \\ \\ \det \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ \end{bmatrix} \end{align*} As we can see, the fourth and fifth rows of the equivalent matrix are equal. But by Axiom 3' of the determinant function, this means that $d(A_1, A_2, A_3, A_4, A_5) = 0.$ Thus, the set of vectors is dependent.