
- Calculus, Volume 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability
- Tom M. Apostol
- Second Edition
- 1991
- 978-1-119-49676-2
1.10 Exercises
In each of Exercises 1 through 10, let $S$ denote the set of all vectors $(x, y, z)$ in $V_3$ whose components satisfy the condition given. Determine whether $S$ is a subspace of $V_3.$ If $S$ is a subspace, compute $\dim S.$
- $x = 0.$
- $x + y = 0.$
- $x + y + z = 0.$
- $x = y.$
- $x = y = z.$
- $x = y$ or $x = z.$
- $x^2 - y^2 = 0.$
- $x + y = 1.$
- $y = 2x$ and $z = 3x.$
- $x + y + z = 0$ and $x - y - z = 0.$
Let $P_n$ denote the linear space of all real polynomials of degree $\leq n,$ where $n$ is fixed. In each of Exercises 11 through 20, let $S$ denote the set of all polynomials $f$ in $P_n$ satisfying the condition given. Determine whether or not $S$ is a subspace of $P_n.$ If $S$ is a subspace, compute $\dim S.$